Properties

Label 3.2e3_107.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{3} \cdot 107 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$856= 2^{3} \cdot 107 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 6 x^{4} + 14 x^{3} + 6 x^{2} - 39 x + 35 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.2e3_107.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 34 + 25\cdot 47 + \left(16 a + 23\right)\cdot 47^{2} + \left(22 a + 22\right)\cdot 47^{3} + \left(25 a + 30\right)\cdot 47^{4} + \left(25 a + 37\right)\cdot 47^{5} + \left(12 a + 17\right)\cdot 47^{6} + \left(35 a + 15\right)\cdot 47^{7} + 34\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 31 + \left(46 a + 4\right)\cdot 47 + \left(30 a + 8\right)\cdot 47^{2} + \left(24 a + 4\right)\cdot 47^{3} + \left(21 a + 12\right)\cdot 47^{4} + \left(21 a + 16\right)\cdot 47^{5} + \left(34 a + 17\right)\cdot 47^{6} + \left(11 a + 26\right)\cdot 47^{7} + 46 a\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 15 + \left(12 a + 14\right)\cdot 47 + \left(24 a + 38\right)\cdot 47^{2} + 19\cdot 47^{3} + \left(12 a + 35\right)\cdot 47^{4} + \left(13 a + 10\right)\cdot 47^{5} + \left(34 a + 34\right)\cdot 47^{6} + \left(24 a + 31\right)\cdot 47^{7} + \left(41 a + 22\right)\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 42 + 5\cdot 47 + 28\cdot 47^{2} + 29\cdot 47^{3} + 10\cdot 47^{4} + 43\cdot 47^{5} + 21\cdot 47^{6} + 9\cdot 47^{7} + 28\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 24 + 18\cdot 47 + 15\cdot 47^{2} + 21\cdot 47^{3} + 40\cdot 47^{4} + 7\cdot 47^{5} + 7\cdot 47^{6} + 11\cdot 47^{7} + 21\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 33 a + 43 + \left(34 a + 24\right)\cdot 47 + \left(22 a + 27\right)\cdot 47^{2} + \left(46 a + 43\right)\cdot 47^{3} + \left(34 a + 11\right)\cdot 47^{4} + \left(33 a + 25\right)\cdot 47^{5} + \left(12 a + 42\right)\cdot 47^{6} + \left(22 a + 46\right)\cdot 47^{7} + \left(5 a + 33\right)\cdot 47^{8} +O\left(47^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)(2,6,5)$
$(1,4)(2,5)$
$(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,2)(3,6)(4,5)$$-3$
$3$$2$$(3,6)$$1$
$3$$2$$(3,6)(4,5)$$-1$
$6$$2$$(1,4)(2,5)$$-1$
$6$$2$$(1,4)(2,5)(3,6)$$1$
$8$$3$$(1,3,4)(2,6,5)$$0$
$6$$4$$(3,5,6,4)$$-1$
$6$$4$$(1,2)(3,5,6,4)$$1$
$8$$6$$(1,3,5,2,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.