Properties

Label 3.2e2_71e2.4t5.1
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 71^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$20164= 2^{2} \cdot 71^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 5 x^{2} - x + 10 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 337 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 120 + 107\cdot 337^{2} + 194\cdot 337^{3} + 323\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 274 + 270\cdot 337 + 106\cdot 337^{2} + 300\cdot 337^{3} + 323\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 287 + 292\cdot 337 + 223\cdot 337^{2} + 235\cdot 337^{3} + 193\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 331 + 109\cdot 337 + 236\cdot 337^{2} + 280\cdot 337^{3} + 169\cdot 337^{4} +O\left(337^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.