Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 107 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 + 43\cdot 107 + 75\cdot 107^{2} + 40\cdot 107^{3} + 84\cdot 107^{4} +O\left(107^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 18 + 103\cdot 107 + 88\cdot 107^{2} + 12\cdot 107^{3} + 32\cdot 107^{4} +O\left(107^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 83 + 16\cdot 107 + 27\cdot 107^{2} + 59\cdot 107^{3} + 4\cdot 107^{4} +O\left(107^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 102 + 50\cdot 107 + 22\cdot 107^{2} + 101\cdot 107^{3} + 92\cdot 107^{4} +O\left(107^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $3$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $6$ |
$2$ |
$(1,2)$ |
$1$ |
| $8$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $6$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.