Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 383 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 15 + 271\cdot 383 + 354\cdot 383^{2} + 216\cdot 383^{3} + 184\cdot 383^{4} +O\left(383^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 69 + 279\cdot 383 + 234\cdot 383^{2} + 320\cdot 383^{3} + 10\cdot 383^{4} +O\left(383^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 340 + 171\cdot 383 + 304\cdot 383^{2} + 226\cdot 383^{3} + 228\cdot 383^{4} +O\left(383^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 343 + 43\cdot 383 + 255\cdot 383^{2} + 383^{3} + 342\cdot 383^{4} +O\left(383^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $6$ | $2$ | $(1,2)$ | $1$ |
| $8$ | $3$ | $(1,2,3)$ | $0$ |
| $6$ | $4$ | $(1,2,3,4)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.