Properties

Label 3.2e2_5e3_17e2.4t5.2c1
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 5^{3} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$144500= 2^{2} \cdot 5^{3} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 9 x^{2} - x + 36 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 90 + 170\cdot 311 + 9\cdot 311^{2} + 271\cdot 311^{3} + 83\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 139 + 223\cdot 311^{2} + 92\cdot 311^{3} + 47\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 190 + 87\cdot 311 + 119\cdot 311^{2} + 118\cdot 311^{3} + 179\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 204 + 52\cdot 311 + 270\cdot 311^{2} + 139\cdot 311^{3} +O\left(311^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.