Properties

Label 3.2e2_5e2_97.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 5^{2} \cdot 97 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$9700= 2^{2} \cdot 5^{2} \cdot 97 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 31 x^{4} + 31 x^{3} - 94 x^{2} - 200 x - 106 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 38 + 19\cdot 43 + 18\cdot 43^{2} + 34\cdot 43^{3} + 17\cdot 43^{4} + 13\cdot 43^{5} + 12\cdot 43^{6} + 9\cdot 43^{7} + 12\cdot 43^{8} + 24\cdot 43^{9} + 26\cdot 43^{10} + 27\cdot 43^{11} + 41\cdot 43^{12} +O\left(43^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 4 a + \left(22 a + 19\right)\cdot 43 + \left(18 a + 18\right)\cdot 43^{2} + \left(19 a + 31\right)\cdot 43^{3} + \left(3 a + 5\right)\cdot 43^{4} + \left(16 a + 2\right)\cdot 43^{5} + \left(14 a + 6\right)\cdot 43^{6} + \left(11 a + 8\right)\cdot 43^{7} + \left(20 a + 26\right)\cdot 43^{8} + \left(14 a + 39\right)\cdot 43^{9} + \left(35 a + 31\right)\cdot 43^{10} + \left(23 a + 35\right)\cdot 43^{11} + \left(38 a + 1\right)\cdot 43^{12} +O\left(43^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 39 a + 4 + \left(20 a + 37\right)\cdot 43 + \left(24 a + 14\right)\cdot 43^{2} + \left(23 a + 32\right)\cdot 43^{3} + \left(39 a + 32\right)\cdot 43^{4} + \left(26 a + 14\right)\cdot 43^{5} + \left(28 a + 4\right)\cdot 43^{6} + \left(31 a + 5\right)\cdot 43^{7} + \left(22 a + 35\right)\cdot 43^{8} + \left(28 a + 33\right)\cdot 43^{9} + \left(7 a + 9\right)\cdot 43^{10} + \left(19 a + 24\right)\cdot 43^{11} + \left(4 a + 16\right)\cdot 43^{12} +O\left(43^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 36 a + 18 + \left(10 a + 31\right)\cdot 43 + 39\cdot 43^{2} + \left(37 a + 28\right)\cdot 43^{3} + \left(36 a + 33\right)\cdot 43^{4} + \left(38 a + 15\right)\cdot 43^{5} + \left(2 a + 23\right)\cdot 43^{6} + \left(11 a + 42\right)\cdot 43^{7} + \left(7 a + 24\right)\cdot 43^{8} + \left(17 a + 37\right)\cdot 43^{9} + \left(15 a + 32\right)\cdot 43^{10} + \left(33 a + 11\right)\cdot 43^{11} + \left(10 a + 14\right)\cdot 43^{12} +O\left(43^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 11 + \left(32 a + 6\right)\cdot 43 + \left(42 a + 29\right)\cdot 43^{2} + \left(5 a + 22\right)\cdot 43^{3} + \left(6 a + 33\right)\cdot 43^{4} + \left(4 a + 17\right)\cdot 43^{5} + \left(40 a + 30\right)\cdot 43^{6} + \left(31 a + 7\right)\cdot 43^{7} + \left(35 a + 21\right)\cdot 43^{8} + \left(25 a + 4\right)\cdot 43^{9} + \left(27 a + 31\right)\cdot 43^{10} + \left(9 a + 29\right)\cdot 43^{11} + \left(32 a + 34\right)\cdot 43^{12} +O\left(43^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 18 + 15\cdot 43 + 8\cdot 43^{2} + 22\cdot 43^{3} + 5\cdot 43^{4} + 22\cdot 43^{5} + 9\cdot 43^{6} + 13\cdot 43^{7} + 9\cdot 43^{8} + 32\cdot 43^{9} + 39\cdot 43^{10} + 42\cdot 43^{11} + 19\cdot 43^{12} +O\left(43^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(5,6)$
$(3,5)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,6)(2,4)(3,5)$ $-3$
$3$ $2$ $(3,5)$ $1$
$3$ $2$ $(1,6)(3,5)$ $-1$
$6$ $2$ $(1,2)(4,6)$ $-1$
$6$ $2$ $(1,2)(3,5)(4,6)$ $1$
$8$ $3$ $(1,2,3)(4,5,6)$ $0$
$6$ $4$ $(1,3,6,5)$ $-1$
$6$ $4$ $(1,4,6,2)(3,5)$ $1$
$8$ $6$ $(1,2,3,6,4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.