Properties

Label 3.2e2_5e2_7e2.6t8.1
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 5^{2} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$4900= 2^{2} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 4 x^{2} + 24 x + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 383 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 271\cdot 383 + 354\cdot 383^{2} + 216\cdot 383^{3} + 184\cdot 383^{4} +O\left(383^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 69 + 279\cdot 383 + 234\cdot 383^{2} + 320\cdot 383^{3} + 10\cdot 383^{4} +O\left(383^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 340 + 171\cdot 383 + 304\cdot 383^{2} + 226\cdot 383^{3} + 228\cdot 383^{4} +O\left(383^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 343 + 43\cdot 383 + 255\cdot 383^{2} + 383^{3} + 342\cdot 383^{4} +O\left(383^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.