Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 90 + 170\cdot 311 + 9\cdot 311^{2} + 271\cdot 311^{3} + 83\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 139 + 223\cdot 311^{2} + 92\cdot 311^{3} + 47\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 190 + 87\cdot 311 + 119\cdot 311^{2} + 118\cdot 311^{3} + 179\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 204 + 52\cdot 311 + 270\cdot 311^{2} + 139\cdot 311^{3} +O\left(311^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $3$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $6$ |
$2$ |
$(1,2)$ |
$-1$ |
| $8$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $6$ |
$4$ |
$(1,2,3,4)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.