Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 211 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 60 + 53\cdot 211 + 146\cdot 211^{2} + 104\cdot 211^{3} + 179\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 74 + 15\cdot 211 + 210\cdot 211^{2} + 20\cdot 211^{3} + 134\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 82 + 90\cdot 211 + 200\cdot 211^{2} + 132\cdot 211^{3} + 103\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 207 + 51\cdot 211 + 76\cdot 211^{2} + 163\cdot 211^{3} + 4\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $6$ | $2$ | $(1,2)$ | $-1$ |
| $8$ | $3$ | $(1,2,3)$ | $0$ |
| $6$ | $4$ | $(1,2,3,4)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.