Properties

Label 3.2e2_5e2_13e3.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 5^{2} \cdot 13^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$219700= 2^{2} \cdot 5^{2} \cdot 13^{3} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 8 x^{2} + 6 x + 35 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 173 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 113 + 171\cdot 173 + 57\cdot 173^{2} + 148\cdot 173^{3} + 48\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 114 + 36\cdot 173 + 32\cdot 173^{2} + 82\cdot 173^{3} + 66\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 143 + 60\cdot 173 + 145\cdot 173^{2} + 45\cdot 173^{3} + 137\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 151 + 76\cdot 173 + 110\cdot 173^{2} + 69\cdot 173^{3} + 93\cdot 173^{4} +O\left(173^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.