Properties

Label 3.2e2_5e2_107e2.18t24.3c2
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 2^{2} \cdot 5^{2} \cdot 107^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$1144900= 2^{2} \cdot 5^{2} \cdot 107^{2} $
Artin number field: Splitting field of $f= x^{9} - x^{8} - 5 x^{7} + x^{6} + 19 x^{5} - 10 x^{4} - 22 x^{3} + 23 x^{2} - 8 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 18T24
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{3} + 2 x + 27 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 13\cdot 29 + 11\cdot 29^{2} + 27\cdot 29^{3} + 24\cdot 29^{4} + 23\cdot 29^{5} + 19\cdot 29^{6} + 22\cdot 29^{8} + 5\cdot 29^{9} + 5\cdot 29^{10} + 6\cdot 29^{11} + 25\cdot 29^{12} +O\left(29^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 27 a^{2} + 16 a + 20 + \left(18 a^{2} + 3 a + 11\right)\cdot 29 + \left(22 a^{2} + 7 a + 20\right)\cdot 29^{2} + \left(15 a^{2} + 3 a + 11\right)\cdot 29^{3} + \left(21 a^{2} + 13 a + 11\right)\cdot 29^{4} + \left(3 a^{2} + 4 a + 13\right)\cdot 29^{5} + \left(3 a^{2} + 20 a + 28\right)\cdot 29^{6} + \left(24 a^{2} + 12 a + 14\right)\cdot 29^{7} + \left(25 a^{2} + 5 a + 20\right)\cdot 29^{8} + \left(9 a^{2} + 3 a\right)\cdot 29^{9} + \left(13 a^{2} + 5 a + 24\right)\cdot 29^{10} + \left(5 a^{2} + 9 a + 24\right)\cdot 29^{11} + \left(21 a^{2} + 10 a + 18\right)\cdot 29^{12} +O\left(29^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 17 a^{2} + 6 a + 26 + \left(7 a^{2} + 22 a + 15\right)\cdot 29 + \left(24 a^{2} + 22 a + 22\right)\cdot 29^{2} + \left(14 a + 20\right)\cdot 29^{3} + \left(16 a^{2} + 13 a + 13\right)\cdot 29^{4} + \left(4 a^{2} + 18 a + 14\right)\cdot 29^{5} + \left(25 a^{2} + 4 a + 9\right)\cdot 29^{6} + \left(7 a^{2} + 17 a + 22\right)\cdot 29^{7} + \left(21 a^{2} + 22 a + 4\right)\cdot 29^{8} + \left(9 a^{2} + 18 a + 10\right)\cdot 29^{9} + \left(11 a^{2} + 4 a + 21\right)\cdot 29^{10} + \left(27 a^{2} + 5 a + 5\right)\cdot 29^{11} + \left(27 a^{2} + 9 a + 18\right)\cdot 29^{12} +O\left(29^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 28 + 12\cdot 29 + 16\cdot 29^{2} + 18\cdot 29^{3} + 5\cdot 29^{4} + 5\cdot 29^{5} + 23\cdot 29^{7} + 10\cdot 29^{8} + 19\cdot 29^{9} + 8\cdot 29^{10} + 5\cdot 29^{11} + 25\cdot 29^{12} +O\left(29^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 25 a^{2} + 24 a + 25 + \left(23 a^{2} + 17 a + 13\right)\cdot 29 + \left(9 a^{2} + 18\right)\cdot 29^{2} + \left(11 a^{2} + 28 a + 1\right)\cdot 29^{3} + \left(6 a^{2} + 18 a + 15\right)\cdot 29^{4} + \left(18 a^{2} + a + 8\right)\cdot 29^{5} + \left(16 a^{2} + 24 a\right)\cdot 29^{6} + \left(26 a^{2} + 19\right)\cdot 29^{7} + \left(19 a^{2} + 2 a + 10\right)\cdot 29^{8} + \left(7 a^{2} + 6 a + 19\right)\cdot 29^{9} + \left(7 a^{2} + 14 a + 21\right)\cdot 29^{10} + \left(2 a^{2} + 28 a + 6\right)\cdot 29^{11} + \left(18 a^{2} + 21 a + 18\right)\cdot 29^{12} +O\left(29^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 12 a^{2} + 12 a + 27 + \left(24 a^{2} + 3 a + 4\right)\cdot 29 + \left(16 a^{2} + 14 a + 18\right)\cdot 29^{2} + \left(22 a^{2} + 12 a + 16\right)\cdot 29^{3} + \left(9 a^{2} + 22 a + 19\right)\cdot 29^{4} + \left(21 a^{2} + 28 a + 12\right)\cdot 29^{5} + \left(19 a^{2} + 13 a + 4\right)\cdot 29^{6} + \left(23 a^{2} + 3 a + 15\right)\cdot 29^{7} + \left(19 a^{2} + 27 a + 10\right)\cdot 29^{8} + \left(15 a^{2} + 4 a + 20\right)\cdot 29^{9} + \left(15 a^{2} + 10 a + 3\right)\cdot 29^{10} + \left(14 a^{2} + 16 a + 23\right)\cdot 29^{11} + \left(a^{2} + 19 a + 5\right)\cdot 29^{12} +O\left(29^{ 13 }\right)$
$r_{ 7 }$ $=$ $ 21 a^{2} + 22 a + 10 + \left(9 a^{2} + 7 a + 14\right)\cdot 29 + \left(2 a^{2} + 14 a + 8\right)\cdot 29^{2} + \left(24 a^{2} + 17 a + 28\right)\cdot 29^{3} + \left(12 a^{2} + 16 a + 13\right)\cdot 29^{4} + \left(18 a^{2} + 27 a + 18\right)\cdot 29^{5} + \left(21 a^{2} + 19 a + 16\right)\cdot 29^{6} + \left(7 a^{2} + 24 a + 3\right)\cdot 29^{7} + \left(18 a^{2} + 28 a + 18\right)\cdot 29^{8} + \left(5 a^{2} + 17 a + 16\right)\cdot 29^{9} + \left(6 a^{2} + 4 a + 10\right)\cdot 29^{10} + \left(12 a^{2} + 13 a + 10\right)\cdot 29^{11} + \left(9 a^{2} + 16 a + 16\right)\cdot 29^{12} +O\left(29^{ 13 }\right)$
$r_{ 8 }$ $=$ $ 14 a^{2} + 7 a + 22 + \left(2 a^{2} + 3 a + 18\right)\cdot 29 + \left(11 a^{2} + 28 a + 14\right)\cdot 29^{2} + \left(12 a^{2} + 10 a + 26\right)\cdot 29^{3} + \left(20 a^{2} + 2 a + 9\right)\cdot 29^{4} + \left(20 a^{2} + 6 a + 26\right)\cdot 29^{5} + \left(4 a + 5\right)\cdot 29^{6} + \left(26 a^{2} + 28 a + 27\right)\cdot 29^{7} + \left(10 a^{2} + 19\right)\cdot 29^{8} + \left(9 a^{2} + 7 a + 9\right)\cdot 29^{9} + \left(4 a^{2} + 19 a + 2\right)\cdot 29^{10} + \left(25 a^{2} + 14 a + 22\right)\cdot 29^{11} + \left(8 a^{2} + 9 a + 21\right)\cdot 29^{12} +O\left(29^{ 13 }\right)$
$r_{ 9 }$ $=$ $ 15 + 10\cdot 29 + 14\cdot 29^{2} + 22\cdot 29^{3} + 29^{4} + 22\cdot 29^{5} + 29^{6} + 19\cdot 29^{7} + 27\cdot 29^{8} + 13\cdot 29^{9} + 18\cdot 29^{10} + 11\cdot 29^{11} + 24\cdot 29^{12} +O\left(29^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4,9)(2,3,8)(5,7,6)$
$(2,7)(3,6)(5,8)$
$(2,8,3)(5,7,6)$
$(1,3,5)(2,6,9)(4,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(1,7)(4,6)(5,9)$$-1$
$1$$3$$(1,4,9)(2,3,8)(5,7,6)$$3 \zeta_{3}$
$1$$3$$(1,9,4)(2,8,3)(5,6,7)$$-3 \zeta_{3} - 3$
$6$$3$$(1,3,5)(2,6,9)(4,8,7)$$0$
$6$$3$$(1,2,5)(3,7,4)(6,9,8)$$0$
$6$$3$$(2,8,3)(5,7,6)$$0$
$6$$3$$(1,5,8)(2,4,7)(3,9,6)$$0$
$9$$6$$(1,6,9,7,4,5)(2,3,8)$$-\zeta_{3}$
$9$$6$$(1,5,4,7,9,6)(2,8,3)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.