Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 a + 53 + \left(32 a + 22\right)\cdot 59 + \left(39 a + 37\right)\cdot 59^{2} + \left(49 a + 58\right)\cdot 59^{3} + \left(42 a + 17\right)\cdot 59^{4} + \left(27 a + 13\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 56 + 44\cdot 59 + 33\cdot 59^{2} + 59^{3} + 53\cdot 59^{4} + 37\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 55 a + 57 + \left(26 a + 50\right)\cdot 59 + \left(19 a + 44\right)\cdot 59^{2} + \left(9 a + 9\right)\cdot 59^{3} + \left(16 a + 11\right)\cdot 59^{4} + \left(31 a + 57\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 43 a + 24 + 26 a\cdot 59 + \left(24 a + 12\right)\cdot 59^{2} + \left(28 a + 14\right)\cdot 59^{3} + \left(53 a + 23\right)\cdot 59^{4} + \left(39 a + 23\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 39 + 14\cdot 59 + 39\cdot 59^{2} + 15\cdot 59^{3} + 23\cdot 59^{4} + 35\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 16 a + 8 + \left(32 a + 43\right)\cdot 59 + \left(34 a + 9\right)\cdot 59^{2} + \left(30 a + 18\right)\cdot 59^{3} + \left(5 a + 48\right)\cdot 59^{4} + \left(19 a + 9\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,3)(4,5)$ |
| $(2,5)$ |
| $(1,2,3)(4,6,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $1$ |
$2$ |
$(1,6)(2,5)(3,4)$ |
$-3$ |
| $3$ |
$2$ |
$(1,6)$ |
$1$ |
| $3$ |
$2$ |
$(1,6)(2,5)$ |
$-1$ |
| $6$ |
$2$ |
$(2,3)(4,5)$ |
$-1$ |
| $6$ |
$2$ |
$(1,6)(2,3)(4,5)$ |
$1$ |
| $8$ |
$3$ |
$(1,2,3)(4,6,5)$ |
$0$ |
| $6$ |
$4$ |
$(1,5,6,2)$ |
$-1$ |
| $6$ |
$4$ |
$(1,4,6,3)(2,5)$ |
$1$ |
| $8$ |
$6$ |
$(1,5,4,6,2,3)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.