Properties

Label 3.2e2_5_37.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 5 \cdot 37 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$740= 2^{2} \cdot 5 \cdot 37 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - x^{3} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.5_37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 53 + \left(32 a + 22\right)\cdot 59 + \left(39 a + 37\right)\cdot 59^{2} + \left(49 a + 58\right)\cdot 59^{3} + \left(42 a + 17\right)\cdot 59^{4} + \left(27 a + 13\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 56 + 44\cdot 59 + 33\cdot 59^{2} + 59^{3} + 53\cdot 59^{4} + 37\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 55 a + 57 + \left(26 a + 50\right)\cdot 59 + \left(19 a + 44\right)\cdot 59^{2} + \left(9 a + 9\right)\cdot 59^{3} + \left(16 a + 11\right)\cdot 59^{4} + \left(31 a + 57\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 43 a + 24 + 26 a\cdot 59 + \left(24 a + 12\right)\cdot 59^{2} + \left(28 a + 14\right)\cdot 59^{3} + \left(53 a + 23\right)\cdot 59^{4} + \left(39 a + 23\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 39 + 14\cdot 59 + 39\cdot 59^{2} + 15\cdot 59^{3} + 23\cdot 59^{4} + 35\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 8 + \left(32 a + 43\right)\cdot 59 + \left(34 a + 9\right)\cdot 59^{2} + \left(30 a + 18\right)\cdot 59^{3} + \left(5 a + 48\right)\cdot 59^{4} + \left(19 a + 9\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(2,5)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,5)(3,4)$$-3$
$3$$2$$(1,6)$$1$
$3$$2$$(1,6)(2,5)$$-1$
$6$$2$$(2,3)(4,5)$$1$
$6$$2$$(1,6)(2,3)(4,5)$$-1$
$8$$3$$(1,2,3)(4,6,5)$$0$
$6$$4$$(1,5,6,2)$$1$
$6$$4$$(1,4,6,3)(2,5)$$-1$
$8$$6$$(1,5,4,6,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.