Properties

Label 3.2e2_5_151.9t12.4c2
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 2^{2} \cdot 5 \cdot 151 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$3020= 2^{2} \cdot 5 \cdot 151 $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + x^{7} - 5 x^{5} + 10 x^{4} - 11 x^{3} + 6 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $(C_3^2:C_3):C_2$
Parity: Odd
Determinant: 1.5_151.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 113 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 113 }$: $ x^{3} + 8 x + 110 $
Roots:
$r_{ 1 }$ $=$ $ 29 + 20\cdot 113 + 36\cdot 113^{2} + 103\cdot 113^{3} + 33\cdot 113^{4} + 35\cdot 113^{5} + 35\cdot 113^{6} + 86\cdot 113^{7} + 20\cdot 113^{8} + 39\cdot 113^{9} + 96\cdot 113^{10} +O\left(113^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 34 + 70\cdot 113 + 70\cdot 113^{2} + 8\cdot 113^{3} + 31\cdot 113^{4} + 57\cdot 113^{5} + 23\cdot 113^{6} + 73\cdot 113^{7} + 69\cdot 113^{8} + 97\cdot 113^{9} + 16\cdot 113^{10} +O\left(113^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 51 + 22\cdot 113 + 6\cdot 113^{2} + 113^{3} + 48\cdot 113^{4} + 20\cdot 113^{5} + 54\cdot 113^{6} + 66\cdot 113^{7} + 22\cdot 113^{8} + 89\cdot 113^{9} + 112\cdot 113^{10} +O\left(113^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 7 a^{2} + 77 a + \left(8 a^{2} + 92 a + 43\right)\cdot 113 + \left(97 a^{2} + 55 a + 103\right)\cdot 113^{2} + \left(52 a^{2} + 29 a + 55\right)\cdot 113^{3} + \left(89 a^{2} + 36 a + 100\right)\cdot 113^{4} + \left(34 a^{2} + 45 a + 34\right)\cdot 113^{5} + \left(111 a^{2} + 85 a + 66\right)\cdot 113^{6} + \left(53 a^{2} + 49 a + 99\right)\cdot 113^{7} + \left(10 a^{2} + 41 a + 55\right)\cdot 113^{8} + \left(65 a^{2} + 106 a + 83\right)\cdot 113^{9} + \left(14 a^{2} + 43 a + 77\right)\cdot 113^{10} +O\left(113^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 49 a^{2} + 79 a + 111 + \left(31 a^{2} + 86 a + 16\right)\cdot 113 + \left(104 a^{2} + 48 a + 104\right)\cdot 113^{2} + \left(73 a^{2} + 88 a + 92\right)\cdot 113^{3} + \left(82 a^{2} + 109 a + 101\right)\cdot 113^{4} + \left(58 a^{2} + 63 a + 11\right)\cdot 113^{5} + \left(107 a^{2} + 97 a + 46\right)\cdot 113^{6} + \left(75 a^{2} + 52 a + 28\right)\cdot 113^{7} + \left(108 a^{2} + 96 a + 52\right)\cdot 113^{8} + \left(83 a^{2} + 90 a + 33\right)\cdot 113^{9} + \left(10 a^{2} + 61 a + 57\right)\cdot 113^{10} +O\left(113^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 85 a^{2} + 89 a + 77 + \left(43 a^{2} + 5 a + 82\right)\cdot 113 + \left(24 a^{2} + 101 a + 54\right)\cdot 113^{2} + \left(26 a^{2} + 31 a + 64\right)\cdot 113^{3} + \left(19 a^{2} + 7 a + 102\right)\cdot 113^{4} + \left(82 a^{2} + 105 a + 23\right)\cdot 113^{5} + \left(32 a^{2} + 108 a + 99\right)\cdot 113^{6} + \left(59 a^{2} + 73 a + 14\right)\cdot 113^{7} + \left(17 a^{2} + 67 a + 18\right)\cdot 113^{8} + \left(47 a^{2} + 73 a + 63\right)\cdot 113^{9} + \left(53 a^{2} + 91 a + 96\right)\cdot 113^{10} +O\left(113^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 92 a^{2} + 58 a + 39 + \left(37 a^{2} + 20 a + 13\right)\cdot 113 + \left(97 a^{2} + 76 a + 67\right)\cdot 113^{2} + \left(12 a^{2} + 105 a + 68\right)\cdot 113^{3} + \left(11 a^{2} + 108 a + 21\right)\cdot 113^{4} + \left(85 a^{2} + 56 a + 77\right)\cdot 113^{5} + \left(85 a^{2} + 19 a + 80\right)\cdot 113^{6} + \left(90 a^{2} + 99 a + 69\right)\cdot 113^{7} + \left(99 a^{2} + 61 a + 42\right)\cdot 113^{8} + \left(94 a^{2} + 61 a + 16\right)\cdot 113^{9} + \left(48 a^{2} + 72 a + 72\right)\cdot 113^{10} +O\left(113^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 107 a^{2} + 9 a + 6 + \left(97 a^{2} + 110 a + 108\right)\cdot 113 + \left(58 a^{2} + 35 a + 87\right)\cdot 113^{2} + \left(49 a^{2} + 30 a + 75\right)\cdot 113^{3} + \left(25 a^{2} + 8 a + 22\right)\cdot 113^{4} + \left(108 a^{2} + a + 12\right)\cdot 113^{5} + \left(23 a^{2} + 26 a + 90\right)\cdot 113^{6} + \left(61 a^{2} + 52 a + 62\right)\cdot 113^{7} + \left(79 a^{2} + 47\right)\cdot 113^{8} + \left(76 a^{2} + 32 a + 32\right)\cdot 113^{9} + \left(51 a^{2} + 26 a + 87\right)\cdot 113^{10} +O\left(113^{ 11 }\right)$
$r_{ 9 }$ $=$ $ 112 a^{2} + 27 a + 108 + \left(6 a^{2} + 23 a + 74\right)\cdot 113 + \left(70 a^{2} + 21 a + 34\right)\cdot 113^{2} + \left(10 a^{2} + 53 a + 94\right)\cdot 113^{3} + \left(111 a^{2} + 68 a + 102\right)\cdot 113^{4} + \left(82 a^{2} + 66 a + 65\right)\cdot 113^{5} + \left(90 a^{2} + a + 69\right)\cdot 113^{6} + \left(110 a^{2} + 11 a + 63\right)\cdot 113^{7} + \left(22 a^{2} + 71 a + 9\right)\cdot 113^{8} + \left(84 a^{2} + 87 a + 110\right)\cdot 113^{9} + \left(46 a^{2} + 42 a + 60\right)\cdot 113^{10} +O\left(113^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5,4)(2,7,8)(3,6,9)$
$(4,9,8)(5,7,6)$
$(4,6)(5,8)(7,9)$
$(1,2,3)(4,8,9)(5,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(1,9)(2,4)(3,8)$$1$
$1$$3$$(1,2,3)(4,8,9)(5,7,6)$$3 \zeta_{3}$
$1$$3$$(1,3,2)(4,9,8)(5,6,7)$$-3 \zeta_{3} - 3$
$6$$3$$(1,5,4)(2,7,8)(3,6,9)$$0$
$6$$3$$(1,7,4)(2,6,8)(3,5,9)$$0$
$6$$3$$(1,6,4)(2,5,8)(3,7,9)$$0$
$6$$3$$(4,9,8)(5,7,6)$$0$
$9$$6$$(1,8,2,9,3,4)(5,6,7)$$-\zeta_{3} - 1$
$9$$6$$(1,4,3,9,2,8)(5,7,6)$$\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.