Properties

Label 3.2e2_547.9t12.3c2
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 2^{2} \cdot 547 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$2188= 2^{2} \cdot 547 $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 3 x^{7} + 6 x^{6} - 14 x^{5} + 7 x^{4} + 19 x^{3} - 19 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $(C_3^2:C_3):C_2$
Parity: Odd
Determinant: 1.547.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 17.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 2\cdot 11 + 6\cdot 11^{2} + 10\cdot 11^{5} + 7\cdot 11^{6} + 6\cdot 11^{7} + 8\cdot 11^{8} + 2\cdot 11^{9} + 7\cdot 11^{10} + 2\cdot 11^{11} + 3\cdot 11^{13} + 6\cdot 11^{14} + 5\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 2 }$ $=$ $ 4 + 8\cdot 11 + 11^{2} + 2\cdot 11^{3} + 11^{4} + 7\cdot 11^{5} + 2\cdot 11^{6} + 10\cdot 11^{7} + 6\cdot 11^{8} + 2\cdot 11^{11} + 9\cdot 11^{12} + 4\cdot 11^{13} + 10\cdot 11^{14} + 3\cdot 11^{15} + 8\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 3 }$ $=$ $ 8 a^{2} + 8 a + \left(7 a^{2} + 7 a + 3\right)\cdot 11 + \left(8 a^{2} + 9 a + 4\right)\cdot 11^{2} + \left(6 a^{2} + 2 a + 5\right)\cdot 11^{3} + \left(10 a^{2} + 5 a + 10\right)\cdot 11^{4} + \left(6 a + 4\right)\cdot 11^{5} + \left(2 a^{2} + 7 a + 6\right)\cdot 11^{6} + \left(a^{2} + 7 a + 1\right)\cdot 11^{7} + \left(a^{2} + 5\right)\cdot 11^{8} + \left(2 a^{2} + 4 a + 6\right)\cdot 11^{9} + \left(4 a + 7\right)\cdot 11^{10} + \left(4 a^{2} + 5 a + 1\right)\cdot 11^{11} + \left(8 a^{2} + 3 a\right)\cdot 11^{12} + \left(5 a^{2} + 3 a + 4\right)\cdot 11^{13} + \left(10 a^{2} + 10\right)\cdot 11^{14} + \left(3 a^{2} + 8 a + 8\right)\cdot 11^{15} + \left(6 a^{2} + 6 a + 4\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 4 + \left(6 a^{2} + 6 a + 4\right)\cdot 11 + \left(2 a^{2} + 6 a + 3\right)\cdot 11^{2} + \left(6 a^{2} + 8\right)\cdot 11^{3} + \left(8 a^{2} + 10 a + 7\right)\cdot 11^{4} + \left(6 a^{2} + a + 1\right)\cdot 11^{5} + \left(2 a^{2} + a + 7\right)\cdot 11^{6} + \left(3 a^{2} + 5 a\right)\cdot 11^{7} + \left(3 a^{2} + 4 a + 8\right)\cdot 11^{8} + \left(5 a + 7\right)\cdot 11^{9} + \left(6 a^{2} + a\right)\cdot 11^{10} + \left(8 a^{2} + 3 a + 4\right)\cdot 11^{11} + \left(3 a^{2} + 5 a + 1\right)\cdot 11^{12} + \left(8 a + 4\right)\cdot 11^{13} + \left(4 a^{2} + 5 a + 5\right)\cdot 11^{14} + \left(a^{2} + 5\right)\cdot 11^{15} + \left(5 a^{2} + 9 a + 10\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 5 }$ $=$ $ 3 a^{2} + 6 a + 8 + \left(8 a^{2} + 7 a + 3\right)\cdot 11 + \left(10 a^{2} + 5 a + 3\right)\cdot 11^{2} + \left(8 a^{2} + 7 a + 8\right)\cdot 11^{3} + \left(2 a^{2} + 6 a + 3\right)\cdot 11^{4} + \left(3 a^{2} + 2 a + 4\right)\cdot 11^{5} + \left(6 a^{2} + 2 a + 8\right)\cdot 11^{6} + \left(6 a^{2} + 9 a + 8\right)\cdot 11^{7} + \left(6 a^{2} + 5 a + 8\right)\cdot 11^{8} + \left(8 a^{2} + a + 7\right)\cdot 11^{9} + \left(4 a^{2} + 5 a + 2\right)\cdot 11^{10} + \left(9 a^{2} + 2 a + 5\right)\cdot 11^{11} + \left(9 a^{2} + 2 a + 9\right)\cdot 11^{12} + \left(4 a^{2} + 10 a + 2\right)\cdot 11^{13} + \left(7 a^{2} + 4 a + 6\right)\cdot 11^{14} + \left(5 a^{2} + 2 a + 7\right)\cdot 11^{15} + \left(10 a^{2} + 6 a + 6\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 6 }$ $=$ $ 6 + 3\cdot 11^{2} + 8\cdot 11^{3} + 9\cdot 11^{4} + 4\cdot 11^{5} + 5\cdot 11^{7} + 6\cdot 11^{8} + 7\cdot 11^{9} + 3\cdot 11^{10} + 6\cdot 11^{11} + 11^{12} + 3\cdot 11^{13} + 5\cdot 11^{14} + 6\cdot 11^{15} + 8\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 7 }$ $=$ $ 10 a^{2} + 4 a + 10 + \left(4 a^{2} + 10 a + 2\right)\cdot 11 + \left(3 a^{2} + a + 8\right)\cdot 11^{2} + \left(4 a^{2} + a + 5\right)\cdot 11^{3} + \left(3 a^{2} + 4\right)\cdot 11^{4} + \left(10 a^{2} + 9 a + 6\right)\cdot 11^{5} + \left(4 a^{2} + 8 a + 6\right)\cdot 11^{6} + \left(3 a^{2} + 5 a + 4\right)\cdot 11^{7} + \left(a^{2} + 5\right)\cdot 11^{8} + \left(10 a + 7\right)\cdot 11^{9} + \left(7 a^{2} + 10 a + 5\right)\cdot 11^{10} + \left(2 a^{2} + a + 3\right)\cdot 11^{11} + \left(2 a^{2} + 10 a + 10\right)\cdot 11^{12} + \left(10 a^{2} + 3 a + 9\right)\cdot 11^{13} + \left(7 a^{2} + 9 a + 6\right)\cdot 11^{14} + \left(6 a^{2} + a + 1\right)\cdot 11^{15} + \left(3 a^{2} + 1\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 8 }$ $=$ $ 6 a^{2} + 7 a + 1 + \left(2 a^{2} + 4 a + 7\right)\cdot 11 + \left(8 a^{2} + 4 a + 3\right)\cdot 11^{2} + \left(a^{2} + 8 a + 2\right)\cdot 11^{3} + \left(8 a^{2} + a + 7\right)\cdot 11^{4} + \left(a^{2} + 8 a + 9\right)\cdot 11^{5} + \left(2 a^{2} + 9 a + 2\right)\cdot 11^{6} + \left(9 a^{2} + 3 a + 1\right)\cdot 11^{7} + \left(7 a^{2} + 4 a + 3\right)\cdot 11^{8} + \left(2 a^{2} + 7 a + 7\right)\cdot 11^{9} + \left(8 a + 7\right)\cdot 11^{10} + \left(3 a^{2} + 5 a + 7\right)\cdot 11^{11} + \left(3 a^{2} + 7 a\right)\cdot 11^{12} + \left(2 a^{2} + 3 a + 3\right)\cdot 11^{13} + \left(5 a^{2} + 7 a + 3\right)\cdot 11^{14} + \left(4 a + 4\right)\cdot 11^{15} + \left(7 a^{2} + 5 a + 9\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 9 }$ $=$ $ 6 a^{2} + 1 + \left(3 a^{2} + 7 a + 1\right)\cdot 11 + \left(10 a^{2} + 4 a + 10\right)\cdot 11^{2} + \left(4 a^{2} + a + 2\right)\cdot 11^{3} + \left(10 a^{2} + 9 a + 10\right)\cdot 11^{4} + \left(9 a^{2} + 4 a + 5\right)\cdot 11^{5} + \left(3 a^{2} + 3 a + 1\right)\cdot 11^{6} + \left(9 a^{2} + a + 5\right)\cdot 11^{7} + \left(a^{2} + 6 a + 2\right)\cdot 11^{8} + \left(8 a^{2} + 4 a + 7\right)\cdot 11^{9} + \left(3 a^{2} + 2 a + 8\right)\cdot 11^{10} + \left(5 a^{2} + 3 a + 10\right)\cdot 11^{11} + \left(5 a^{2} + 4 a + 10\right)\cdot 11^{12} + \left(9 a^{2} + 3 a + 8\right)\cdot 11^{13} + \left(8 a^{2} + 5 a\right)\cdot 11^{14} + \left(3 a^{2} + 4 a + 5\right)\cdot 11^{15} + 5 a\cdot 11^{16} +O\left(11^{ 17 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(3,7)(4,8)(5,9)$
$(3,5,4)(7,8,9)$
$(1,9,3)(2,7,4)(5,6,8)$
$(1,6,2)(3,5,4)(7,9,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(1,4)(2,5)(3,6)$$1$
$1$$3$$(1,6,2)(3,5,4)(7,9,8)$$3 \zeta_{3}$
$1$$3$$(1,2,6)(3,4,5)(7,8,9)$$-3 \zeta_{3} - 3$
$6$$3$$(1,9,3)(2,7,4)(5,6,8)$$0$
$6$$3$$(1,7,3)(2,8,4)(5,6,9)$$0$
$6$$3$$(3,5,4)(7,8,9)$$0$
$6$$3$$(1,3,8)(2,4,9)(5,7,6)$$0$
$9$$6$$(1,5,6,4,2,3)(7,8,9)$$-\zeta_{3} - 1$
$9$$6$$(1,3,2,4,6,5)(7,9,8)$$\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.