Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 199 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 62 + 152\cdot 199 + 105\cdot 199^{2} + 96\cdot 199^{3} + 3\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 104 + 186\cdot 199 + 28\cdot 199^{2} + 26\cdot 199^{3} + 77\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 125 + 135\cdot 199 + 172\cdot 199^{2} + 153\cdot 199^{3} + 190\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 133 + 96\cdot 199 + 119\cdot 199^{2} + 97\cdot 199^{3} + 198\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 175 + 25\cdot 199 + 170\cdot 199^{2} + 23\cdot 199^{3} + 127\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$3$ |
$3$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
$-1$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$0$ |
$0$ |
| $12$ |
$5$ |
$(1,2,3,4,5)$ |
$-\zeta_{5}^{3} - \zeta_{5}^{2}$ |
$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ |
| $12$ |
$5$ |
$(1,3,4,5,2)$ |
$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ |
$-\zeta_{5}^{3} - \zeta_{5}^{2}$ |
The blue line marks the conjugacy class containing complex conjugation.