Properties

Label 3.2e2_487e2.12t33.1
Dimension 3
Group $A_5$
Conductor $ 2^{2} \cdot 487^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$948676= 2^{2} \cdot 487^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 5 x^{3} + 10 x^{2} + 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 199 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 62 + 152\cdot 199 + 105\cdot 199^{2} + 96\cdot 199^{3} + 3\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 104 + 186\cdot 199 + 28\cdot 199^{2} + 26\cdot 199^{3} + 77\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 125 + 135\cdot 199 + 172\cdot 199^{2} + 153\cdot 199^{3} + 190\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 133 + 96\cdot 199 + 119\cdot 199^{2} + 97\cdot 199^{3} + 198\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 175 + 25\cdot 199 + 170\cdot 199^{2} + 23\cdot 199^{3} + 127\cdot 199^{4} +O\left(199^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$15$ $2$ $(1,2)(3,4)$ $-1$ $-1$
$20$ $3$ $(1,2,3)$ $0$ $0$
$12$ $5$ $(1,2,3,4,5)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$ $5$ $(1,3,4,5,2)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.