Properties

Label 3.2e2_401e2.12t33.1c1
Dimension 3
Group $A_5$
Conductor $ 2^{2} \cdot 401^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$643204= 2^{2} \cdot 401^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 5 x^{3} + 17 x^{2} - 22 x + 12 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 31 a + 62 + \left(70 a + 36\right)\cdot 73 + \left(36 a + 3\right)\cdot 73^{2} + \left(44 a + 65\right)\cdot 73^{3} + \left(22 a + 4\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 42 a + 9 + \left(2 a + 71\right)\cdot 73 + \left(36 a + 43\right)\cdot 73^{2} + \left(28 a + 15\right)\cdot 73^{3} + \left(50 a + 28\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 + 50\cdot 73 + 30\cdot 73^{2} + 3\cdot 73^{3} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 42 a + 71 + \left(27 a + 9\right)\cdot 73 + \left(37 a + 28\right)\cdot 73^{2} + \left(45 a + 54\right)\cdot 73^{3} + \left(48 a + 42\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 31 a + 51 + \left(45 a + 50\right)\cdot 73 + \left(35 a + 39\right)\cdot 73^{2} + \left(27 a + 7\right)\cdot 73^{3} + \left(24 a + 70\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$12$$5$$(1,3,4,5,2)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.