Basic invariants
| Dimension: | $3$ |
| Group: | $S_4$ |
| Conductor: | \(544644\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 41^{2} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin number field: | Galois closure of 4.2.544644.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $S_4$ |
| Parity: | odd |
| Projective image: | $S_4$ |
| Projective field: | Galois closure of 4.2.544644.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
| $r_{ 1 }$ | $=$ |
\( 23 + 78\cdot 97 + 14\cdot 97^{2} + 60\cdot 97^{3} + 63\cdot 97^{4} +O(97^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 38 + 42\cdot 97 + 54\cdot 97^{2} + 92\cdot 97^{3} + 3\cdot 97^{4} +O(97^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 61 + 22\cdot 97 + 77\cdot 97^{2} + 76\cdot 97^{3} + 18\cdot 97^{4} +O(97^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 73 + 50\cdot 97 + 47\cdot 97^{2} + 61\cdot 97^{3} + 10\cdot 97^{4} +O(97^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character values |
| $c1$ | |||
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $6$ | $2$ | $(1,2)$ | $1$ |
| $8$ | $3$ | $(1,2,3)$ | $0$ |
| $6$ | $4$ | $(1,2,3,4)$ | $-1$ |