Properties

Label 3.2e2_3e4_41e2.18t24.5c2
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 2^{2} \cdot 3^{4} \cdot 41^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$544644= 2^{2} \cdot 3^{4} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 3 x^{7} - x^{6} - 3 x^{5} + 12 x^{4} - 20 x^{3} + 15 x^{2} - 6 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 18T24
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 9 a^{2} + \left(13 a^{2} + 16 a + 15\right)\cdot 17 + \left(12 a^{2} + 16 a + 15\right)\cdot 17^{2} + \left(a^{2} + 16 a + 7\right)\cdot 17^{3} + \left(4 a^{2} + 6 a + 14\right)\cdot 17^{4} + \left(a^{2} + 14 a + 5\right)\cdot 17^{5} + \left(5 a^{2} + 15 a + 3\right)\cdot 17^{6} + \left(8 a^{2} + 7 a + 2\right)\cdot 17^{7} + \left(13 a + 3\right)\cdot 17^{8} + \left(4 a^{2} + 16 a + 11\right)\cdot 17^{9} + \left(a^{2} + 10 a + 3\right)\cdot 17^{10} + \left(2 a^{2} + 16 a + 5\right)\cdot 17^{11} + \left(14 a^{2} + 9 a + 11\right)\cdot 17^{12} + \left(14 a^{2} + 10 a + 15\right)\cdot 17^{13} +O\left(17^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 13 a^{2} + 5 a + 14 + \left(a^{2} + 6 a + 12\right)\cdot 17 + \left(11 a^{2} + 4 a + 14\right)\cdot 17^{2} + \left(14 a^{2} + 14 a + 10\right)\cdot 17^{3} + \left(10 a^{2} + 7\right)\cdot 17^{4} + \left(7 a^{2} + 12 a + 4\right)\cdot 17^{5} + \left(14 a^{2} + 3 a + 15\right)\cdot 17^{6} + \left(16 a^{2} + 14 a + 7\right)\cdot 17^{7} + \left(12 a^{2} + 11\right)\cdot 17^{8} + \left(14 a^{2} + 16 a + 12\right)\cdot 17^{9} + \left(11 a^{2} + 10\right)\cdot 17^{10} + \left(7 a^{2} + 14\right)\cdot 17^{11} + \left(10 a + 7\right)\cdot 17^{12} + \left(2 a^{2} + 14 a + 1\right)\cdot 17^{13} +O\left(17^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 10 + 14\cdot 17 + 11\cdot 17^{2} + 2\cdot 17^{3} + 9\cdot 17^{4} + 11\cdot 17^{5} + 2\cdot 17^{6} + 13\cdot 17^{7} + 14\cdot 17^{8} + 9\cdot 17^{9} + 8\cdot 17^{10} + 13\cdot 17^{11} + 4\cdot 17^{12} + 2\cdot 17^{13} +O\left(17^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 12 a^{2} + 12 a + 2 + \left(a^{2} + 11 a + 7\right)\cdot 17 + \left(10 a^{2} + 12 a + 8\right)\cdot 17^{2} + \left(2 a + 1\right)\cdot 17^{3} + \left(2 a^{2} + 9 a + 13\right)\cdot 17^{4} + \left(8 a^{2} + 7 a + 4\right)\cdot 17^{5} + \left(14 a^{2} + 14 a + 15\right)\cdot 17^{6} + \left(8 a^{2} + 11 a + 13\right)\cdot 17^{7} + \left(3 a^{2} + 2 a + 10\right)\cdot 17^{8} + \left(15 a^{2} + a + 1\right)\cdot 17^{9} + \left(3 a^{2} + 5 a + 11\right)\cdot 17^{10} + \left(7 a^{2} + 8\right)\cdot 17^{11} + \left(2 a^{2} + 14 a + 3\right)\cdot 17^{12} + 8 a\cdot 17^{13} +O\left(17^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 15 + 6\cdot 17 + 14\cdot 17^{2} + 16\cdot 17^{3} + 17^{4} + 12\cdot 17^{5} + 17^{6} + 15\cdot 17^{7} + 10\cdot 17^{8} + 14\cdot 17^{9} + 8\cdot 17^{10} + 14\cdot 17^{11} + 3\cdot 17^{13} +O\left(17^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 8 + \left(14 a^{2} + 9 a + 10\right)\cdot 17 + \left(13 a^{2} + 3 a + 5\right)\cdot 17^{2} + \left(3 a^{2} + 3 a + 2\right)\cdot 17^{3} + \left(5 a^{2} + 9 a + 14\right)\cdot 17^{4} + \left(7 a^{2} + 13 a + 14\right)\cdot 17^{5} + \left(10 a^{2} + 15 a + 2\right)\cdot 17^{6} + \left(7 a^{2} + 12 a + 10\right)\cdot 17^{7} + \left(8 a^{2} + 2 a + 2\right)\cdot 17^{8} + \left(6 a^{2} + 3 a + 5\right)\cdot 17^{9} + \left(13 a^{2} + 12 a + 8\right)\cdot 17^{10} + \left(10 a^{2} + 14 a + 9\right)\cdot 17^{11} + \left(16 a^{2} + 4 a + 8\right)\cdot 17^{12} + \left(10 a^{2} + 7 a + 11\right)\cdot 17^{13} +O\left(17^{ 14 }\right)$
$r_{ 7 }$ $=$ $ a^{2} + 11 a + 3 + \left(8 a^{2} + 2 a + 12\right)\cdot 17 + \left(16 a^{2} + 8 a + 1\right)\cdot 17^{2} + \left(12 a^{2} + 14 a + 14\right)\cdot 17^{3} + \left(11 a^{2} + 10 a + 12\right)\cdot 17^{4} + \left(6 a^{2} + a + 8\right)\cdot 17^{5} + \left(7 a^{2} + 13 a + 6\right)\cdot 17^{6} + \left(4 a^{2} + 12 a + 2\right)\cdot 17^{7} + \left(9 a^{2} + 3\right)\cdot 17^{8} + \left(10 a^{2} + 4 a + 2\right)\cdot 17^{9} + \left(5 a^{2} + 14 a + 3\right)\cdot 17^{10} + \left(2 a^{2} + 13 a + 15\right)\cdot 17^{11} + \left(8 a^{2} + 12 a + 2\right)\cdot 17^{12} + \left(15 a^{2} + 10 a + 3\right)\cdot 17^{13} +O\left(17^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 16 a^{2} + 2 a + 13 + \left(11 a^{2} + 5 a + 14\right)\cdot 17 + \left(3 a^{2} + 5 a + 15\right)\cdot 17^{2} + \left(16 a + 16\right)\cdot 17^{3} + \left(13 a + 4\right)\cdot 17^{4} + \left(3 a^{2} + a + 6\right)\cdot 17^{5} + \left(16 a^{2} + 5 a + 12\right)\cdot 17^{6} + \left(4 a^{2} + 8 a + 2\right)\cdot 17^{7} + \left(16 a^{2} + 13 a + 2\right)\cdot 17^{8} + \left(16 a^{2} + 9 a + 12\right)\cdot 17^{9} + \left(14 a^{2} + 7 a + 3\right)\cdot 17^{10} + \left(3 a^{2} + 5 a + 16\right)\cdot 17^{11} + \left(9 a^{2} + 16 a + 14\right)\cdot 17^{12} + \left(7 a^{2} + 15 a + 14\right)\cdot 17^{13} +O\left(17^{ 14 }\right)$
$r_{ 9 }$ $=$ $ 6 + 8\cdot 17 + 13\cdot 17^{2} + 11\cdot 17^{3} + 6\cdot 17^{4} + 16\cdot 17^{5} + 7\cdot 17^{6} + 9\cdot 17^{8} + 15\cdot 17^{9} + 9\cdot 17^{10} + 4\cdot 17^{11} + 13\cdot 17^{12} + 15\cdot 17^{13} +O\left(17^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(3,6)(5,7)(8,9)$
$(1,5,6)(2,3,8)(4,9,7)$
$(1,4,2)(3,5,9)(6,7,8)$
$(3,9,5)(6,7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(1,8)(2,7)(4,6)$$-1$
$1$$3$$(1,4,2)(3,5,9)(6,7,8)$$-3 \zeta_{3} - 3$
$1$$3$$(1,2,4)(3,9,5)(6,8,7)$$3 \zeta_{3}$
$6$$3$$(1,5,6)(2,3,8)(4,9,7)$$0$
$6$$3$$(1,3,6)(2,9,8)(4,5,7)$$0$
$6$$3$$(3,9,5)(6,7,8)$$0$
$6$$3$$(1,6,9)(2,8,5)(3,4,7)$$0$
$9$$6$$(1,7,4,8,2,6)(3,9,5)$$-\zeta_{3}$
$9$$6$$(1,6,2,8,4,7)(3,5,9)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.