Properties

Label 3.2e2_3e4_41e2.12t33.2
Dimension 3
Group $A_5$
Conductor $ 2^{2} \cdot 3^{4} \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$544644= 2^{2} \cdot 3^{4} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{5} + x^{3} - 3 x^{2} + 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 563 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 62 + 490\cdot 563 + 556\cdot 563^{2} + 137\cdot 563^{3} + 481\cdot 563^{4} +O\left(563^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 92 + 96\cdot 563 + 22\cdot 563^{2} + 500\cdot 563^{3} + 453\cdot 563^{4} +O\left(563^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 119 + 419\cdot 563 + 335\cdot 563^{2} + 36\cdot 563^{3} + 335\cdot 563^{4} +O\left(563^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 322 + 504\cdot 563 + 238\cdot 563^{2} + 528\cdot 563^{3} + 182\cdot 563^{4} +O\left(563^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 531 + 178\cdot 563 + 535\cdot 563^{2} + 485\cdot 563^{3} + 235\cdot 563^{4} +O\left(563^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$15$ $2$ $(1,2)(3,4)$ $-1$ $-1$
$20$ $3$ $(1,2,3)$ $0$ $0$
$12$ $5$ $(1,2,3,4,5)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$ $5$ $(1,3,4,5,2)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.