Properties

Label 3.2e2_3e4_41e2.12t33.1c1
Dimension 3
Group $A_5$
Conductor $ 2^{2} \cdot 3^{4} \cdot 41^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$544644= 2^{2} \cdot 3^{4} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + x^{3} + 5 x^{2} - 10 x - 13 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 431 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 182 + 402\cdot 431 + 162\cdot 431^{2} + 224\cdot 431^{3} + 405\cdot 431^{4} +O\left(431^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 213 + 401\cdot 431 + 181\cdot 431^{2} + 331\cdot 431^{3} + 287\cdot 431^{4} +O\left(431^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 252 + 404\cdot 431 + 138\cdot 431^{2} + 317\cdot 431^{3} + 276\cdot 431^{4} +O\left(431^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 261 + 387\cdot 431 + 14\cdot 431^{2} + 76\cdot 431^{3} + 77\cdot 431^{4} +O\left(431^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 387 + 127\cdot 431 + 363\cdot 431^{2} + 343\cdot 431^{3} + 245\cdot 431^{4} +O\left(431^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$12$$5$$(1,3,4,5,2)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.