Properties

Label 3.2e2_3e4_19.9t12.2c1
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 2^{2} \cdot 3^{4} \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$6156= 2^{2} \cdot 3^{4} \cdot 19 $
Artin number field: Splitting field of $f= x^{9} - x^{7} - 3 x^{6} - 9 x^{5} - 8 x^{4} - 8 x^{3} - 3 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $(C_3^2:C_3):C_2$
Parity: Odd
Determinant: 1.19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 23 + 3\cdot 23^{2} + 2\cdot 23^{3} + 7\cdot 23^{4} + 19\cdot 23^{5} + 4\cdot 23^{6} + 10\cdot 23^{7} + 16\cdot 23^{8} + 23^{9} + 19\cdot 23^{10} + 19\cdot 23^{11} + 23^{12} + 8\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 9 a^{2} + 2 a + 12 + \left(16 a^{2} + 2 a + 6\right)\cdot 23 + \left(14 a^{2} + 6 a + 4\right)\cdot 23^{2} + \left(13 a^{2} + 8 a + 18\right)\cdot 23^{3} + \left(12 a^{2} + 15 a + 16\right)\cdot 23^{4} + \left(16 a^{2} + 19 a + 6\right)\cdot 23^{5} + \left(13 a^{2} + a + 18\right)\cdot 23^{6} + \left(22 a^{2} + 17 a + 14\right)\cdot 23^{7} + \left(4 a^{2} + 10 a + 6\right)\cdot 23^{8} + \left(10 a^{2} + 8 a + 21\right)\cdot 23^{9} + \left(16 a^{2} + 22 a + 21\right)\cdot 23^{10} + \left(10 a^{2} + 20 a + 21\right)\cdot 23^{11} + \left(10 a^{2} + 10 a + 13\right)\cdot 23^{12} + \left(11 a^{2} + 5 a + 7\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 17 a^{2} + 15 + \left(14 a^{2} + 15 a + 19\right)\cdot 23 + \left(16 a^{2} + 16 a + 6\right)\cdot 23^{2} + \left(13 a^{2} + 3 a + 18\right)\cdot 23^{3} + \left(18 a^{2} + 3 a + 1\right)\cdot 23^{4} + \left(6 a^{2} + 2 a + 9\right)\cdot 23^{5} + \left(3 a^{2} + 16 a + 4\right)\cdot 23^{6} + \left(20 a^{2} + 22 a + 19\right)\cdot 23^{7} + \left(19 a^{2} + 5 a + 18\right)\cdot 23^{8} + \left(9 a^{2} + 17 a + 20\right)\cdot 23^{9} + \left(4 a^{2} + 14 a + 5\right)\cdot 23^{10} + \left(10 a^{2} + 4 a + 21\right)\cdot 23^{11} + \left(17 a^{2} + 15 a + 7\right)\cdot 23^{12} + \left(8 a^{2} + 16 a + 19\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 4 + 14\cdot 23^{2} + 12\cdot 23^{3} + 5\cdot 23^{4} + 3\cdot 23^{5} + 23^{6} + 20\cdot 23^{7} + 20\cdot 23^{8} + 15\cdot 23^{9} + 4\cdot 23^{10} + 23^{11} + 9\cdot 23^{12} + 21\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 17 + 21\cdot 23 + 5\cdot 23^{2} + 8\cdot 23^{3} + 10\cdot 23^{4} + 17\cdot 23^{6} + 15\cdot 23^{7} + 8\cdot 23^{8} + 5\cdot 23^{9} + 22\cdot 23^{10} + 23^{11} + 12\cdot 23^{12} + 16\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 20 a^{2} + 21 a + 19 + \left(14 a^{2} + 5 a + 19\right)\cdot 23 + \left(14 a^{2} + 11\right)\cdot 23^{2} + \left(18 a^{2} + 11 a + 9\right)\cdot 23^{3} + \left(14 a^{2} + 4 a + 4\right)\cdot 23^{4} + \left(22 a^{2} + a + 7\right)\cdot 23^{5} + \left(5 a^{2} + 5 a\right)\cdot 23^{6} + \left(3 a^{2} + 6 a + 12\right)\cdot 23^{7} + \left(21 a^{2} + 6 a + 20\right)\cdot 23^{8} + \left(2 a^{2} + 20 a + 3\right)\cdot 23^{9} + \left(2 a^{2} + 8 a + 18\right)\cdot 23^{10} + \left(2 a^{2} + 20 a + 2\right)\cdot 23^{11} + \left(18 a^{2} + 19 a + 1\right)\cdot 23^{12} + \left(2 a^{2} + 19\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 7 a + \left(3 a^{2} + 4 a + 4\right)\cdot 23 + \left(22 a^{2} + 9 a + 14\right)\cdot 23^{3} + \left(21 a^{2} + 7 a + 21\right)\cdot 23^{4} + \left(21 a^{2} + a + 13\right)\cdot 23^{5} + \left(21 a^{2} + 21 a + 21\right)\cdot 23^{6} + \left(15 a^{2} + 21 a + 5\right)\cdot 23^{7} + \left(5 a^{2} + 16 a + 15\right)\cdot 23^{8} + \left(8 a^{2} + 3 a + 18\right)\cdot 23^{9} + \left(22 a^{2} + 4 a + 6\right)\cdot 23^{10} + \left(13 a^{2} + 18 a + 3\right)\cdot 23^{11} + \left(18 a^{2} + 20 a + 17\right)\cdot 23^{12} + 8\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 15 a^{2} + a + 20 + \left(5 a^{2} + 6 a + 22\right)\cdot 23 + \left(15 a^{2} + 13 a + 4\right)\cdot 23^{2} + \left(18 a^{2} + 15 a + 17\right)\cdot 23^{3} + \left(6 a^{2} + 21 a + 16\right)\cdot 23^{4} + \left(19 a^{2} + 19 a + 2\right)\cdot 23^{5} + \left(3 a^{2} + 4 a + 5\right)\cdot 23^{6} + \left(3 a^{2} + 3 a + 4\right)\cdot 23^{7} + \left(21 a^{2} + 21 a + 5\right)\cdot 23^{8} + \left(a^{2} + 18 a + 10\right)\cdot 23^{9} + \left(14 a^{2} + 7 a + 3\right)\cdot 23^{10} + \left(19 a^{2} + 10 a + 3\right)\cdot 23^{11} + \left(a^{2} + 8 a + 10\right)\cdot 23^{12} + \left(2 a^{2} + 21 a + 10\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 9 }$ $=$ $ 8 a^{2} + 15 a + 3 + \left(14 a^{2} + 12 a + 19\right)\cdot 23 + \left(7 a^{2} + 9 a + 17\right)\cdot 23^{2} + \left(5 a^{2} + 21 a + 14\right)\cdot 23^{3} + \left(17 a^{2} + 16 a + 7\right)\cdot 23^{4} + \left(4 a^{2} + a + 6\right)\cdot 23^{5} + \left(20 a^{2} + 20 a + 19\right)\cdot 23^{6} + \left(3 a^{2} + 20 a + 12\right)\cdot 23^{7} + \left(19 a^{2} + 7 a + 2\right)\cdot 23^{8} + \left(12 a^{2} + 17\right)\cdot 23^{9} + \left(9 a^{2} + 11 a + 12\right)\cdot 23^{10} + \left(12 a^{2} + 17 a + 16\right)\cdot 23^{11} + \left(2 a^{2} + 16 a + 18\right)\cdot 23^{12} + \left(20 a^{2} + 3\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,2,9)(3,8,4)(5,6,7)$
$(2,3,6)(7,8,9)$
$(2,9)(3,8)(6,7)$
$(1,5,4)(2,6,3)(7,8,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(2,9)(3,8)(6,7)$$1$
$1$$3$$(1,5,4)(2,6,3)(7,8,9)$$3 \zeta_{3}$
$1$$3$$(1,4,5)(2,3,6)(7,9,8)$$-3 \zeta_{3} - 3$
$6$$3$$(1,2,9)(3,8,4)(5,6,7)$$0$
$6$$3$$(1,3,9)(2,7,5)(4,6,8)$$0$
$6$$3$$(2,3,6)(7,8,9)$$0$
$6$$3$$(1,9,6)(2,4,8)(3,5,7)$$0$
$9$$6$$(1,5,4)(2,7,3,9,6,8)$$\zeta_{3}$
$9$$6$$(1,4,5)(2,8,6,9,3,7)$$-\zeta_{3} - 1$
The blue line marks the conjugacy class containing complex conjugation.