Properties

Label 3.2e2_3e4_13.4t5.1
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 3^{4} \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$4212= 2^{2} \cdot 3^{4} \cdot 13 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 3 x^{2} + x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 269 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 114 + 231\cdot 269 + 176\cdot 269^{2} + 133\cdot 269^{3} + 210\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 124 + 216\cdot 269 + 127\cdot 269^{2} + 242\cdot 269^{3} + 70\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 127 + 89\cdot 269 + 128\cdot 269^{2} + 196\cdot 269^{3} + 90\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 174 + 105\cdot 269^{2} + 234\cdot 269^{3} + 165\cdot 269^{4} +O\left(269^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.