Properties

Label 3.2e2_3e4_127e2.6t8.2
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 3^{4} \cdot 127^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$5225796= 2^{2} \cdot 3^{4} \cdot 127^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 9 x^{2} - 43 x - 56 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 34 + 80\cdot 109 + 75\cdot 109^{2} + 25\cdot 109^{3} + 78\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 50 + 18\cdot 109 + 23\cdot 109^{2} + 85\cdot 109^{3} + 83\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 60 + 65\cdot 109 + 67\cdot 109^{2} + 50\cdot 109^{3} + 19\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 75 + 53\cdot 109 + 51\cdot 109^{2} + 56\cdot 109^{3} + 36\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.