Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 64 a + 5 + \left(14 a + 5\right)\cdot 73 + \left(28 a + 51\right)\cdot 73^{2} + \left(62 a + 28\right)\cdot 73^{3} + 15\cdot 73^{4} + \left(3 a + 11\right)\cdot 73^{5} + \left(68 a + 31\right)\cdot 73^{6} + \left(49 a + 22\right)\cdot 73^{7} +O\left(73^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 9 a + 69 + \left(58 a + 67\right)\cdot 73 + \left(44 a + 21\right)\cdot 73^{2} + \left(10 a + 44\right)\cdot 73^{3} + \left(72 a + 57\right)\cdot 73^{4} + \left(69 a + 61\right)\cdot 73^{5} + \left(4 a + 41\right)\cdot 73^{6} + \left(23 a + 50\right)\cdot 73^{7} +O\left(73^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 64 a + 23 + \left(14 a + 14\right)\cdot 73 + \left(28 a + 25\right)\cdot 73^{2} + \left(62 a + 31\right)\cdot 73^{3} + 44\cdot 73^{4} + \left(3 a + 53\right)\cdot 73^{5} + \left(68 a + 59\right)\cdot 73^{6} + \left(49 a + 41\right)\cdot 73^{7} +O\left(73^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 48 + 71\cdot 73 + 70\cdot 73^{2} + 6\cdot 73^{3} + 28\cdot 73^{4} + 40\cdot 73^{5} + 58\cdot 73^{6} + 5\cdot 73^{7} +O\left(73^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 9 a + 51 + \left(58 a + 58\right)\cdot 73 + \left(44 a + 47\right)\cdot 73^{2} + \left(10 a + 41\right)\cdot 73^{3} + \left(72 a + 28\right)\cdot 73^{4} + \left(69 a + 19\right)\cdot 73^{5} + \left(4 a + 13\right)\cdot 73^{6} + \left(23 a + 31\right)\cdot 73^{7} +O\left(73^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 26 + 73 + 2\cdot 73^{2} + 66\cdot 73^{3} + 44\cdot 73^{4} + 32\cdot 73^{5} + 14\cdot 73^{6} + 67\cdot 73^{7} +O\left(73^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,3,4)(2,5,6)$ |
| $(4,6)$ |
| $(1,4)(2,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $1$ |
$2$ |
$(1,2)(3,5)(4,6)$ |
$-3$ |
| $3$ |
$2$ |
$(1,2)(4,6)$ |
$-1$ |
| $3$ |
$2$ |
$(1,2)$ |
$1$ |
| $6$ |
$2$ |
$(1,4)(2,6)$ |
$-1$ |
| $6$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$1$ |
| $8$ |
$3$ |
$(1,3,4)(2,5,6)$ |
$0$ |
| $6$ |
$4$ |
$(1,6,2,4)$ |
$-1$ |
| $6$ |
$4$ |
$(1,6,2,4)(3,5)$ |
$1$ |
| $8$ |
$6$ |
$(1,6,5,2,4,3)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.