Properties

Label 3.2e2_3e3_5e2_37e2.4t5.2
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 37^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$3696300= 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 14 x - 26 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 23 + 119\cdot 127 + 100\cdot 127^{2} + 34\cdot 127^{3} + 65\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 103\cdot 127 + 66\cdot 127^{2} + 101\cdot 127^{3} + 114\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 35 + 91\cdot 127 + 39\cdot 127^{2} + 83\cdot 127^{3} + 102\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 46 + 67\cdot 127 + 46\cdot 127^{2} + 34\cdot 127^{3} + 98\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.