Properties

Label 3.2e2_3e3_523.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 3^{3} \cdot 523 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$56484= 2^{2} \cdot 3^{3} \cdot 523 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 2 x^{4} - x^{3} + 28 x^{2} - 61 x + 139 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 26 a + 30 + \left(15 a + 4\right)\cdot 37 + \left(27 a + 13\right)\cdot 37^{2} + \left(3 a + 6\right)\cdot 37^{3} + \left(10 a + 19\right)\cdot 37^{4} + \left(15 a + 23\right)\cdot 37^{5} + \left(25 a + 15\right)\cdot 37^{6} + \left(16 a + 4\right)\cdot 37^{7} + \left(14 a + 30\right)\cdot 37^{8} + \left(11 a + 22\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 17 a + 16 + \left(9 a + 13\right)\cdot 37 + \left(a + 21\right)\cdot 37^{2} + \left(4 a + 13\right)\cdot 37^{3} + \left(7 a + 27\right)\cdot 37^{4} + \left(15 a + 33\right)\cdot 37^{5} + \left(25 a + 32\right)\cdot 37^{6} + \left(34 a + 28\right)\cdot 37^{7} + \left(13 a + 5\right)\cdot 37^{8} + \left(6 a + 16\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 21 + 6\cdot 37 + 14\cdot 37^{2} + 16\cdot 37^{3} + 36\cdot 37^{4} + 33\cdot 37^{5} + 15\cdot 37^{6} + 15\cdot 37^{7} + 28\cdot 37^{8} + 15\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 23 + \left(21 a + 4\right)\cdot 37 + \left(9 a + 33\right)\cdot 37^{2} + \left(33 a + 30\right)\cdot 37^{3} + \left(26 a + 18\right)\cdot 37^{4} + 21 a\cdot 37^{5} + \left(11 a + 28\right)\cdot 37^{6} + \left(20 a + 8\right)\cdot 37^{7} + \left(22 a + 34\right)\cdot 37^{8} + \left(25 a + 16\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 14 + 10\cdot 37 + 12\cdot 37^{2} + 15\cdot 37^{3} + 31\cdot 37^{4} + 5\cdot 37^{5} + 10\cdot 37^{6} + 22\cdot 37^{7} + 22\cdot 37^{8} + 11\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 10 + \left(27 a + 34\right)\cdot 37 + \left(35 a + 16\right)\cdot 37^{2} + \left(32 a + 28\right)\cdot 37^{3} + \left(29 a + 14\right)\cdot 37^{4} + \left(21 a + 13\right)\cdot 37^{5} + \left(11 a + 8\right)\cdot 37^{6} + \left(2 a + 31\right)\cdot 37^{7} + \left(23 a + 26\right)\cdot 37^{8} + \left(30 a + 27\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,4,3)(2,6,5)$
$(1,4)(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,5)(4,6)$ $-3$
$3$ $2$ $(3,5)$ $1$
$3$ $2$ $(1,2)(3,5)$ $-1$
$6$ $2$ $(1,4)(2,6)$ $1$
$6$ $2$ $(1,4)(2,6)(3,5)$ $-1$
$8$ $3$ $(1,4,3)(2,6,5)$ $0$
$6$ $4$ $(1,3,2,5)$ $1$
$6$ $4$ $(1,3,2,5)(4,6)$ $-1$
$8$ $6$ $(1,4,3,2,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.