Properties

Label 3.2e2_3e3_409e2.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 3^{3} \cdot 409^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$18066348= 2^{2} \cdot 3^{3} \cdot 409^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 11 x^{4} - 210 x^{3} + 1485 x^{2} + 1332 x - 12219 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 131 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 131 }$: $ x^{2} + 127 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 128 + 69\cdot 131 + 18\cdot 131^{2} + 129\cdot 131^{3} + 64\cdot 131^{4} + 126\cdot 131^{5} + 9\cdot 131^{6} + 75\cdot 131^{7} + 29\cdot 131^{8} + 20\cdot 131^{9} + 92\cdot 131^{10} +O\left(131^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 50 a + 59 + \left(5 a + 124\right)\cdot 131 + \left(71 a + 22\right)\cdot 131^{2} + \left(59 a + 23\right)\cdot 131^{3} + \left(3 a + 83\right)\cdot 131^{4} + \left(74 a + 29\right)\cdot 131^{5} + \left(92 a + 17\right)\cdot 131^{6} + \left(100 a + 12\right)\cdot 131^{7} + \left(117 a + 73\right)\cdot 131^{8} + \left(118 a + 81\right)\cdot 131^{9} + \left(114 a + 32\right)\cdot 131^{10} +O\left(131^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 33 + \left(43 a + 74\right)\cdot 131 + \left(102 a + 124\right)\cdot 131^{2} + \left(99 a + 25\right)\cdot 131^{3} + \left(57 a + 72\right)\cdot 131^{4} + \left(52 a + 103\right)\cdot 131^{5} + \left(a + 42\right)\cdot 131^{6} + \left(44 a + 15\right)\cdot 131^{7} + \left(66 a + 17\right)\cdot 131^{8} + \left(58 a + 86\right)\cdot 131^{9} + \left(56 a + 112\right)\cdot 131^{10} +O\left(131^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 81 a + 128 + \left(125 a + 95\right)\cdot 131 + \left(59 a + 39\right)\cdot 131^{2} + \left(71 a + 59\right)\cdot 131^{3} + \left(127 a + 37\right)\cdot 131^{4} + \left(56 a + 60\right)\cdot 131^{5} + \left(38 a + 51\right)\cdot 131^{6} + \left(30 a + 60\right)\cdot 131^{7} + \left(13 a + 50\right)\cdot 131^{8} + \left(12 a + 46\right)\cdot 131^{9} + \left(16 a + 111\right)\cdot 131^{10} +O\left(131^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 97 + 55\cdot 131 + 89\cdot 131^{2} + 94\cdot 131^{3} + 62\cdot 131^{4} + 79\cdot 131^{5} + 13\cdot 131^{6} + 40\cdot 131^{7} + 115\cdot 131^{8} + 35\cdot 131^{9} + 26\cdot 131^{10} +O\left(131^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 119 a + 81 + \left(87 a + 103\right)\cdot 131 + \left(28 a + 97\right)\cdot 131^{2} + \left(31 a + 60\right)\cdot 131^{3} + \left(73 a + 72\right)\cdot 131^{4} + \left(78 a + 124\right)\cdot 131^{5} + \left(129 a + 126\right)\cdot 131^{6} + \left(86 a + 58\right)\cdot 131^{7} + \left(64 a + 107\right)\cdot 131^{8} + \left(72 a + 122\right)\cdot 131^{9} + \left(74 a + 17\right)\cdot 131^{10} +O\left(131^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,5)$
$(3,4)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,6)(3,4)$ $-3$
$3$ $2$ $(3,4)$ $1$
$3$ $2$ $(1,5)(3,4)$ $-1$
$6$ $2$ $(1,2)(5,6)$ $1$
$6$ $2$ $(1,2)(3,4)(5,6)$ $-1$
$8$ $3$ $(1,2,3)(4,5,6)$ $0$
$6$ $4$ $(1,3,5,4)$ $1$
$6$ $4$ $(1,6,5,2)(3,4)$ $-1$
$8$ $6$ $(1,2,3,5,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.