Properties

Label 3.2e2_3e3_271e2.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 3^{3} \cdot 271^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$7931628= 2^{2} \cdot 3^{3} \cdot 271^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 19 x^{4} + 9 x^{3} + 66 x^{2} + 312 x + 348 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 42 a + 22 + \left(3 a + 30\right)\cdot 53 + \left(26 a + 1\right)\cdot 53^{2} + \left(13 a + 12\right)\cdot 53^{3} + \left(35 a + 13\right)\cdot 53^{4} + \left(11 a + 22\right)\cdot 53^{5} + \left(28 a + 47\right)\cdot 53^{6} + \left(20 a + 5\right)\cdot 53^{7} + \left(44 a + 39\right)\cdot 53^{8} + \left(10 a + 26\right)\cdot 53^{9} + \left(42 a + 38\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 50 a + 38 + \left(41 a + 46\right)\cdot 53 + \left(35 a + 47\right)\cdot 53^{2} + \left(27 a + 35\right)\cdot 53^{3} + \left(46 a + 23\right)\cdot 53^{4} + \left(17 a + 4\right)\cdot 53^{5} + \left(15 a + 43\right)\cdot 53^{6} + \left(11 a + 41\right)\cdot 53^{7} + \left(33 a + 42\right)\cdot 53^{8} + \left(15 a + 26\right)\cdot 53^{9} + \left(33 a + 29\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 26 + \left(11 a + 5\right)\cdot 53 + \left(17 a + 43\right)\cdot 53^{2} + \left(25 a + 4\right)\cdot 53^{3} + \left(6 a + 23\right)\cdot 53^{4} + \left(35 a + 29\right)\cdot 53^{5} + \left(37 a + 33\right)\cdot 53^{6} + \left(41 a + 18\right)\cdot 53^{7} + \left(19 a + 5\right)\cdot 53^{8} + \left(37 a + 3\right)\cdot 53^{9} + \left(19 a + 41\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 12 + 33\cdot 53 + 9\cdot 53^{2} + 28\cdot 53^{3} + 30\cdot 53^{4} + 51\cdot 53^{5} + 5\cdot 53^{6} + 17\cdot 53^{7} + 46\cdot 53^{8} + 7\cdot 53^{9} + 19\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 11 a + 31 + \left(49 a + 3\right)\cdot 53 + \left(26 a + 49\right)\cdot 53^{2} + \left(39 a + 39\right)\cdot 53^{3} + \left(17 a + 34\right)\cdot 53^{4} + \left(41 a + 33\right)\cdot 53^{5} + \left(24 a + 42\right)\cdot 53^{6} + \left(32 a + 6\right)\cdot 53^{7} + \left(8 a + 37\right)\cdot 53^{8} + \left(42 a + 25\right)\cdot 53^{9} + \left(10 a + 37\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 31 + 39\cdot 53 + 7\cdot 53^{2} + 38\cdot 53^{3} + 33\cdot 53^{4} + 17\cdot 53^{5} + 39\cdot 53^{6} + 15\cdot 53^{7} + 41\cdot 53^{8} + 15\cdot 53^{9} + 46\cdot 53^{10} +O\left(53^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)$
$(1,2,4)(3,5,6)$
$(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,3)(2,5)(4,6)$$-3$
$3$$2$$(1,3)$$1$
$3$$2$$(1,3)(2,5)$$-1$
$6$$2$$(2,4)(5,6)$$1$
$6$$2$$(1,3)(2,4)(5,6)$$-1$
$8$$3$$(1,2,4)(3,5,6)$$0$
$6$$4$$(1,5,3,2)$$1$
$6$$4$$(1,5,3,2)(4,6)$$-1$
$8$$6$$(1,5,6,3,2,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.