Properties

Label 3.2e2_3e3_271.4t5.2c1
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 3^{3} \cdot 271 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$29268= 2^{2} \cdot 3^{3} \cdot 271 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 9 x^{2} + 5 x + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.3_271.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 13\cdot 79 + 65\cdot 79^{2} + 27\cdot 79^{3} + 69\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 41 + 73\cdot 79 + 24\cdot 79^{2} + 40\cdot 79^{3} + 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 48 + 37\cdot 79 + 38\cdot 79^{2} + 9\cdot 79^{3} + 35\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 65 + 33\cdot 79 + 29\cdot 79^{2} + 79^{3} + 52\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.