Properties

Label 3.2e2_3e3_17.9t12.3c2
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 2^{2} \cdot 3^{3} \cdot 17 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$1836= 2^{2} \cdot 3^{3} \cdot 17 $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 3 x^{7} + 2 x^{6} - 12 x^{5} + 21 x^{4} - 23 x^{3} + 15 x^{2} - 6 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $(C_3^2:C_3):C_2$
Parity: Odd
Determinant: 1.3_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 15.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 8 + \left(a^{2} + 5 a + 7\right)\cdot 13 + \left(9 a^{2} + 5 a + 1\right)\cdot 13^{2} + \left(7 a^{2} + 9 a + 6\right)\cdot 13^{3} + \left(5 a^{2} + 3 a + 7\right)\cdot 13^{4} + \left(9 a^{2} + 8 a + 8\right)\cdot 13^{5} + \left(10 a^{2} + a + 4\right)\cdot 13^{6} + \left(11 a^{2} + 8 a\right)\cdot 13^{7} + \left(5 a^{2} + 5 a + 10\right)\cdot 13^{8} + \left(8 a^{2} + 6 a + 3\right)\cdot 13^{9} + \left(5 a^{2} + 2 a + 8\right)\cdot 13^{10} + \left(9 a^{2} + 8 a + 8\right)\cdot 13^{11} + \left(10 a^{2} + 4 a + 8\right)\cdot 13^{12} + \left(9 a + 9\right)\cdot 13^{13} + \left(11 a^{2} + 11 a + 10\right)\cdot 13^{14} +O\left(13^{ 15 }\right)$
$r_{ 2 }$ $=$ $ 12 a^{2} + a + 11 + \left(11 a^{2} + 3 a + 4\right)\cdot 13 + \left(7 a^{2} + 2 a + 4\right)\cdot 13^{2} + \left(8 a^{2} + 11 a + 7\right)\cdot 13^{3} + \left(10 a^{2} + 9 a + 5\right)\cdot 13^{4} + \left(4 a + 1\right)\cdot 13^{5} + \left(2 a^{2} + 11 a + 6\right)\cdot 13^{6} + \left(8 a^{2} + 5 a + 8\right)\cdot 13^{7} + \left(3 a^{2} + 8 a + 2\right)\cdot 13^{8} + \left(5 a^{2} + 11 a + 8\right)\cdot 13^{9} + \left(2 a^{2} + 9 a + 12\right)\cdot 13^{10} + \left(a^{2} + 9 a + 1\right)\cdot 13^{11} + \left(4 a^{2} + 10 a + 4\right)\cdot 13^{12} + 2 a\cdot 13^{13} + \left(a^{2} + 6\right)\cdot 13^{14} +O\left(13^{ 15 }\right)$
$r_{ 3 }$ $=$ $ a^{2} + 11 a + 11 + \left(a^{2} + a + 4\right)\cdot 13 + \left(11 a^{2} + 6 a + 11\right)\cdot 13^{2} + \left(7 a^{2} + 10 a + 6\right)\cdot 13^{3} + \left(6 a^{2} + 9 a + 2\right)\cdot 13^{4} + \left(6 a^{2} + a + 12\right)\cdot 13^{5} + \left(12 a^{2} + 8 a + 11\right)\cdot 13^{6} + \left(5 a^{2} + 12 a + 6\right)\cdot 13^{7} + \left(11 a^{2} + 1\right)\cdot 13^{8} + \left(12 a^{2} + 10 a + 10\right)\cdot 13^{9} + \left(6 a^{2} + 2 a + 2\right)\cdot 13^{10} + \left(a^{2} + 9\right)\cdot 13^{11} + \left(5 a^{2} + 10 a + 1\right)\cdot 13^{12} + \left(7 a^{2} + 10 a + 9\right)\cdot 13^{13} + \left(7 a^{2} + 8 a + 4\right)\cdot 13^{14} +O\left(13^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 8 + 8\cdot 13 + 13^{2} + 10\cdot 13^{5} + 8\cdot 13^{6} + 5\cdot 13^{7} + 13^{8} + 8\cdot 13^{9} + 10\cdot 13^{10} + 5\cdot 13^{11} + 9\cdot 13^{12} + 11\cdot 13^{14} +O\left(13^{ 15 }\right)$
$r_{ 5 }$ $=$ $ a^{2} + 4 a + 5 + \left(4 a + 6\right)\cdot 13 + \left(9 a^{2} + 5 a + 1\right)\cdot 13^{2} + \left(9 a^{2} + 5 a\right)\cdot 13^{3} + \left(9 a^{2} + 12 a\right)\cdot 13^{4} + \left(2 a^{2} + 12 a + 4\right)\cdot 13^{5} + \left(12 a + 12\right)\cdot 13^{6} + \left(6 a^{2} + 11 a + 9\right)\cdot 13^{7} + \left(3 a^{2} + 11 a + 6\right)\cdot 13^{8} + \left(12 a^{2} + 7 a + 4\right)\cdot 13^{9} + \left(4 a^{2} + 7\right)\cdot 13^{10} + \left(2 a^{2} + 8 a + 3\right)\cdot 13^{11} + \left(11 a^{2} + 10 a + 9\right)\cdot 13^{12} + \left(11 a^{2} + 2\right)\cdot 13^{13} + \left(a + 10\right)\cdot 13^{14} +O\left(13^{ 15 }\right)$
$r_{ 6 }$ $=$ $ 11 + 7\cdot 13 + 11\cdot 13^{4} + 8\cdot 13^{5} + 13^{6} + 5\cdot 13^{7} + 6\cdot 13^{8} + 8\cdot 13^{9} + 8\cdot 13^{11} + 8\cdot 13^{12} + 9\cdot 13^{13} + 7\cdot 13^{14} +O\left(13^{ 15 }\right)$
$r_{ 7 }$ $=$ $ 4 a^{2} + 4 a + 2 + \left(5 a^{2} + 7 a + 6\right)\cdot 13 + \left(9 a^{2} + 2 a\right)\cdot 13^{2} + \left(4 a^{2} + 7 a + 7\right)\cdot 13^{3} + \left(6 a^{2} + 4 a + 6\right)\cdot 13^{4} + \left(10 a^{2} + 11 a + 4\right)\cdot 13^{5} + \left(12 a^{2} + 10 a + 12\right)\cdot 13^{6} + \left(11 a^{2} + 9 a + 1\right)\cdot 13^{7} + \left(3 a^{2} + 10 a\right)\cdot 13^{8} + \left(8 a^{2} + 7 a + 4\right)\cdot 13^{9} + \left(7 a^{2} + 2 a + 12\right)\cdot 13^{10} + \left(9 a^{2} + 7 a + 6\right)\cdot 13^{11} + \left(2 a^{2} + 8 a + 11\right)\cdot 13^{12} + \left(9 a^{2} + 8 a + 2\right)\cdot 13^{13} + \left(a^{2} + 7 a + 1\right)\cdot 13^{14} +O\left(13^{ 15 }\right)$
$r_{ 8 }$ $=$ $ 9 + 6\cdot 13 + 10\cdot 13^{3} + 7\cdot 13^{4} + 8\cdot 13^{5} + 6\cdot 13^{6} + 12\cdot 13^{7} + 13^{9} + 6\cdot 13^{10} + 2\cdot 13^{11} + 13^{12} + 5\cdot 13^{13} + 9\cdot 13^{14} +O\left(13^{ 15 }\right)$
$r_{ 9 }$ $=$ $ 8 a^{2} + 11 a + 3 + \left(6 a^{2} + 3 a + 12\right)\cdot 13 + \left(5 a^{2} + 4 a + 3\right)\cdot 13^{2} + \left(8 a + 1\right)\cdot 13^{3} + \left(11 a + 11\right)\cdot 13^{4} + \left(9 a^{2} + 12 a + 6\right)\cdot 13^{5} + 6 a\cdot 13^{6} + \left(8 a^{2} + 3 a + 1\right)\cdot 13^{7} + \left(10 a^{2} + a + 9\right)\cdot 13^{8} + \left(4 a^{2} + 8 a + 3\right)\cdot 13^{9} + \left(11 a^{2} + 7 a + 4\right)\cdot 13^{10} + \left(a^{2} + 5 a + 5\right)\cdot 13^{11} + \left(5 a^{2} + 7 a + 10\right)\cdot 13^{12} + \left(9 a^{2} + 6 a + 11\right)\cdot 13^{13} + \left(3 a^{2} + 9 a + 3\right)\cdot 13^{14} +O\left(13^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5,2)(3,7,9)(4,6,8)$
$(1,6,3)(2,4,9)(5,8,7)$
$(3,9,7)(4,6,8)$
$(3,8)(4,7)(6,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(1,7)(2,3)(5,9)$$1$
$1$$3$$(1,5,2)(3,7,9)(4,6,8)$$-3 \zeta_{3} - 3$
$1$$3$$(1,2,5)(3,9,7)(4,8,6)$$3 \zeta_{3}$
$6$$3$$(1,6,3)(2,4,9)(5,8,7)$$0$
$6$$3$$(1,8,3)(2,6,9)(4,7,5)$$0$
$6$$3$$(1,4,3)(2,8,9)(5,6,7)$$0$
$6$$3$$(3,9,7)(4,6,8)$$0$
$9$$6$$(1,9,2,7,5,3)(4,6,8)$$-\zeta_{3} - 1$
$9$$6$$(1,3,5,7,2,9)(4,8,6)$$\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.