Properties

Label 3.2e2_3e3_17.9t12.1c1
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 2^{2} \cdot 3^{3} \cdot 17 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$1836= 2^{2} \cdot 3^{3} \cdot 17 $
Artin number field: Splitting field of $f= x^{9} - x^{7} - 3 x^{6} + 3 x^{5} + 2 x^{4} - 6 x^{3} - 3 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $(C_3^2:C_3):C_2$
Parity: Odd
Determinant: 1.3_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{3} + 2 x + 27 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 5\cdot 29^{2} + 7\cdot 29^{3} + 19\cdot 29^{4} + 10\cdot 29^{5} + 2\cdot 29^{7} + 21\cdot 29^{8} + 22\cdot 29^{9} + 27\cdot 29^{10} + 26\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 27 a^{2} + 5 a + 7 + \left(a^{2} + 16 a + 12\right)\cdot 29 + \left(23 a^{2} + 6 a + 11\right)\cdot 29^{2} + \left(15 a^{2} + 25 a + 11\right)\cdot 29^{3} + \left(17 a^{2} + 8 a + 23\right)\cdot 29^{4} + \left(14 a^{2} + 5 a + 9\right)\cdot 29^{5} + \left(3 a^{2} + a + 14\right)\cdot 29^{6} + \left(14 a^{2} + 8 a + 28\right)\cdot 29^{7} + \left(26 a^{2} + 23 a + 15\right)\cdot 29^{8} + \left(7 a + 20\right)\cdot 29^{9} + \left(11 a^{2} + 19 a + 14\right)\cdot 29^{10} + \left(10 a^{2} + 11 a + 23\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 23 a^{2} + 6 a + 21 + \left(25 a^{2} + 6 a + 24\right)\cdot 29 + \left(4 a^{2} + 5 a + 25\right)\cdot 29^{2} + \left(22 a^{2} + 6 a + 19\right)\cdot 29^{3} + \left(10 a^{2} + 17 a + 4\right)\cdot 29^{4} + \left(11 a^{2} + 14 a + 15\right)\cdot 29^{5} + \left(13 a^{2} + 26 a + 27\right)\cdot 29^{6} + \left(27 a^{2} + 24 a + 26\right)\cdot 29^{7} + \left(2 a^{2} + 25 a + 3\right)\cdot 29^{8} + \left(12 a^{2} + 16\right)\cdot 29^{9} + \left(3 a^{2} + 10 a + 4\right)\cdot 29^{10} + \left(18 a^{2} + 24\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 7 + 3\cdot 29^{2} + 8\cdot 29^{3} + 6\cdot 29^{4} + 6\cdot 29^{5} + 29^{6} + 17\cdot 29^{7} + 25\cdot 29^{8} + 11\cdot 29^{9} + 5\cdot 29^{10} + 9\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 27 a^{2} + 13 a + 7 + \left(11 a^{2} + 6\right)\cdot 29 + \left(a^{2} + 9 a + 21\right)\cdot 29^{2} + \left(a^{2} + 5 a + 20\right)\cdot 29^{3} + \left(11 a^{2} + 19 a + 14\right)\cdot 29^{4} + \left(20 a^{2} + 9 a + 17\right)\cdot 29^{5} + \left(14 a^{2} + 15 a + 19\right)\cdot 29^{6} + 7 a\cdot 29^{7} + \left(6 a^{2} + 24 a + 8\right)\cdot 29^{8} + \left(15 a^{2} + 26 a + 20\right)\cdot 29^{9} + \left(10 a^{2} + 18 a + 23\right)\cdot 29^{10} + \left(2 a^{2} + 26 a + 12\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 14 + 28\cdot 29 + 20\cdot 29^{2} + 13\cdot 29^{3} + 3\cdot 29^{4} + 12\cdot 29^{5} + 27\cdot 29^{6} + 9\cdot 29^{7} + 11\cdot 29^{8} + 23\cdot 29^{9} + 24\cdot 29^{10} + 21\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 8 a^{2} + 18 a + 1 + \left(a^{2} + 6 a + 21\right)\cdot 29 + \left(a^{2} + 17 a + 20\right)\cdot 29^{2} + \left(20 a^{2} + 26 a + 26\right)\cdot 29^{3} + 2 a\cdot 29^{4} + \left(3 a^{2} + 9 a + 4\right)\cdot 29^{5} + \left(12 a^{2} + a + 16\right)\cdot 29^{6} + \left(16 a^{2} + 25 a + 2\right)\cdot 29^{7} + \left(28 a^{2} + 8 a + 9\right)\cdot 29^{8} + \left(15 a^{2} + 20 a + 21\right)\cdot 29^{9} + \left(14 a^{2} + 28 a + 9\right)\cdot 29^{10} + \left(16 a + 10\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 15 a^{2} + 10 a + 20 + \left(17 a^{2} + 27 a + 13\right)\cdot 29 + \left(a^{2} + 26 a + 21\right)\cdot 29^{2} + \left(10 a^{2} + 25 a + 3\right)\cdot 29^{3} + \left(22 a^{2} + 19 a + 20\right)\cdot 29^{4} + \left(3 a^{2} + 14 a + 14\right)\cdot 29^{5} + \left(16 a^{2} + 14 a + 21\right)\cdot 29^{6} + \left(18 a^{2} + 7 a + 24\right)\cdot 29^{7} + \left(18 a^{2} + 5 a + 24\right)\cdot 29^{8} + \left(27 a^{2} + 11 a + 7\right)\cdot 29^{9} + \left(14 a^{2} + 9 a + 10\right)\cdot 29^{10} + \left(20 a^{2} + 7 a + 27\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 9 }$ $=$ $ 16 a^{2} + 6 a + 2 + \left(28 a^{2} + a + 9\right)\cdot 29 + \left(25 a^{2} + 22 a + 15\right)\cdot 29^{2} + \left(17 a^{2} + 26 a + 4\right)\cdot 29^{3} + \left(24 a^{2} + 18 a + 23\right)\cdot 29^{4} + \left(4 a^{2} + 4 a + 25\right)\cdot 29^{5} + \left(27 a^{2} + 28 a + 16\right)\cdot 29^{6} + \left(9 a^{2} + 13 a + 3\right)\cdot 29^{7} + \left(4 a^{2} + 28 a + 25\right)\cdot 29^{8} + \left(15 a^{2} + 19 a\right)\cdot 29^{9} + \left(3 a^{2} + 24\right)\cdot 29^{10} + \left(6 a^{2} + 24 a + 17\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5,2)(3,4,8)(6,9,7)$
$(2,8)(3,9)(5,7)$
$(1,4,6)(2,3,7)(5,8,9)$
$(2,3,7)(5,9,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(1,3)(2,6)(4,7)$$1$
$1$$3$$(1,4,6)(2,3,7)(5,8,9)$$3 \zeta_{3}$
$1$$3$$(1,6,4)(2,7,3)(5,9,8)$$-3 \zeta_{3} - 3$
$6$$3$$(1,5,2)(3,4,8)(6,9,7)$$0$
$6$$3$$(1,9,2)(3,4,5)(6,8,7)$$0$
$6$$3$$(2,3,7)(5,9,8)$$0$
$6$$3$$(1,2,8)(3,9,4)(5,6,7)$$0$
$9$$6$$(1,7,6,3,4,2)(5,8,9)$$\zeta_{3}$
$9$$6$$(1,2,4,3,6,7)(5,9,8)$$-\zeta_{3} - 1$
The blue line marks the conjugacy class containing complex conjugation.