Properties

Label 3.2e2_3e3_127e2.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 3^{3} \cdot 127^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$1741932= 2^{2} \cdot 3^{3} \cdot 127^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 27 x^{2} + 93 x - 114 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 277 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 87 + 261\cdot 277 + 80\cdot 277^{2} + 57\cdot 277^{3} + 195\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 110 + 152\cdot 277 + 275\cdot 277^{2} + 194\cdot 277^{3} + 64\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 163 + 41\cdot 277 + 129\cdot 277^{2} + 198\cdot 277^{3} + 89\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 195 + 98\cdot 277 + 68\cdot 277^{2} + 103\cdot 277^{3} + 204\cdot 277^{4} +O\left(277^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.