Properties

Label 3.2e2_3e2_5_71.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 3^{2} \cdot 5 \cdot 71 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$12780= 2^{2} \cdot 3^{2} \cdot 5 \cdot 71 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 4 x^{2} - 2 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.5_71.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 173 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 11 + 119\cdot 173 + 123\cdot 173^{2} + 51\cdot 173^{3} + 82\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 72 + 61\cdot 173 + 164\cdot 173^{2} + 75\cdot 173^{3} + 6\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 119 + 127\cdot 173 + 113\cdot 173^{2} + 165\cdot 173^{3} + 160\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 145 + 37\cdot 173 + 117\cdot 173^{2} + 52\cdot 173^{3} + 96\cdot 173^{4} +O\left(173^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.