Properties

Label 3.2e2_3e2_587e2.6t8.3c1
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 3^{2} \cdot 587^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$12404484= 2^{2} \cdot 3^{2} \cdot 587^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 2 x^{2} + 4 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 197 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 41 + 75\cdot 197 + 4\cdot 197^{2} + 144\cdot 197^{3} + 189\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 44 + 45\cdot 197 + 129\cdot 197^{2} + 3\cdot 197^{3} + 26\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 142 + 131\cdot 197 + 168\cdot 197^{2} + 183\cdot 197^{3} + 89\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 168 + 141\cdot 197 + 91\cdot 197^{2} + 62\cdot 197^{3} + 88\cdot 197^{4} +O\left(197^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.