Properties

Label 3.2e2_3e2_13e2.6t8.1
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 3^{2} \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$6084= 2^{2} \cdot 3^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 6 x^{2} - 4 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 + 12\cdot 17 + 8\cdot 17^{2} + 6\cdot 17^{3} + 3\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 14 + \left(4 a + 1\right)\cdot 17 + \left(10 a + 8\right)\cdot 17^{2} + \left(5 a + 12\right)\cdot 17^{3} + \left(5 a + 12\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 + 3\cdot 17^{2} + 7\cdot 17^{3} + 5\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 1 + \left(12 a + 2\right)\cdot 17 + \left(6 a + 14\right)\cdot 17^{2} + \left(11 a + 7\right)\cdot 17^{3} + \left(11 a + 12\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.