Properties

Label 3.2e2_3e2_11e2_13e2.6t8.1
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 3^{2} \cdot 11^{2} \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$736164= 2^{2} \cdot 3^{2} \cdot 11^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{4} - 18 x^{2} - 78 x - 192 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 139 + 139^{2} + 136\cdot 139^{3} + 59\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 72 + 115\cdot 139 + 59\cdot 139^{2} + 58\cdot 139^{3} + 86\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 96 + 48\cdot 139 + 44\cdot 139^{2} + 17\cdot 139^{3} + 81\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 100 + 112\cdot 139 + 33\cdot 139^{2} + 66\cdot 139^{3} + 50\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.