Properties

Label 3.2e2_3e2_113e2.18t24.4c1
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 2^{2} \cdot 3^{2} \cdot 113^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$459684= 2^{2} \cdot 3^{2} \cdot 113^{2} $
Artin number field: Splitting field of $f= x^{9} - x^{8} - 3 x^{7} + 6 x^{6} - 11 x^{4} + x^{3} + 7 x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 18T24
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{3} + 7 x + 59 $
Roots:
$r_{ 1 }$ $=$ $ 19 a^{2} + 39 a + 52 + \left(7 a^{2} + 23 a + 36\right)\cdot 61 + \left(51 a^{2} + 15 a + 32\right)\cdot 61^{2} + \left(43 a^{2} + 44 a + 2\right)\cdot 61^{3} + \left(40 a^{2} + 27 a + 20\right)\cdot 61^{4} + \left(3 a^{2} + 47 a + 28\right)\cdot 61^{5} + \left(4 a^{2} + 35 a + 6\right)\cdot 61^{6} + \left(39 a^{2} + 56 a + 7\right)\cdot 61^{7} + \left(26 a^{2} + 53 a + 43\right)\cdot 61^{8} + \left(8 a^{2} + 16 a + 12\right)\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 8 a^{2} + 54 a + 21 + \left(9 a^{2} + a + 45\right)\cdot 61 + \left(17 a^{2} + 4 a + 36\right)\cdot 61^{2} + \left(59 a^{2} + 26 a + 13\right)\cdot 61^{3} + \left(40 a^{2} + 54 a + 21\right)\cdot 61^{4} + \left(48 a^{2} + 42 a + 55\right)\cdot 61^{5} + \left(12 a^{2} + 44 a + 26\right)\cdot 61^{6} + \left(26 a^{2} + 45 a + 28\right)\cdot 61^{7} + \left(59 a^{2} + 43 a + 33\right)\cdot 61^{8} + \left(25 a^{2} + 35 a + 33\right)\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 15 a^{2} + 52 a + 12 + \left(a^{2} + 42 a + 23\right)\cdot 61 + \left(51 a^{2} + 5 a + 14\right)\cdot 61^{2} + \left(2 a^{2} + 58 a + 8\right)\cdot 61^{3} + \left(24 a^{2} + 17 a + 8\right)\cdot 61^{4} + \left(32 a^{2} + 7 a + 52\right)\cdot 61^{5} + \left(18 a^{2} + 5 a + 20\right)\cdot 61^{6} + \left(a^{2} + 55 a + 17\right)\cdot 61^{7} + \left(15 a^{2} + 14 a + 13\right)\cdot 61^{8} + \left(58 a^{2} + 28 a + 25\right)\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 10 + 31\cdot 61 + 41\cdot 61^{2} + 3\cdot 61^{3} + 49\cdot 61^{4} + 16\cdot 61^{5} + 30\cdot 61^{6} + 5\cdot 61^{7} + 38\cdot 61^{8} + 48\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 40 + 55\cdot 61 + 27\cdot 61^{2} + 17\cdot 61^{3} + 26\cdot 61^{4} + 48\cdot 61^{5} + 35\cdot 61^{6} + 28\cdot 61^{7} + 57\cdot 61^{8} + 43\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 34 a^{2} + 29 a + \left(44 a^{2} + 35 a + 48\right)\cdot 61 + \left(53 a^{2} + 41 a + 44\right)\cdot 61^{2} + \left(18 a^{2} + 51 a + 48\right)\cdot 61^{3} + \left(40 a^{2} + 39 a + 58\right)\cdot 61^{4} + \left(8 a^{2} + 31 a + 10\right)\cdot 61^{5} + \left(44 a^{2} + 41 a + 51\right)\cdot 61^{6} + \left(56 a^{2} + 19 a + 48\right)\cdot 61^{7} + \left(35 a^{2} + 24 a + 45\right)\cdot 61^{8} + \left(26 a^{2} + 8 a + 56\right)\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 60 a^{2} + 36 a + 39 + \left(4 a^{2} + 60 a + 40\right)\cdot 61 + \left(13 a^{2} + 22 a + 40\right)\cdot 61^{2} + \left(55 a^{2} + 45 a + 8\right)\cdot 61^{3} + \left(49 a^{2} + 12 a + 27\right)\cdot 61^{4} + \left(7 a^{2} + 59\right)\cdot 61^{5} + \left(21 a^{2} + 16 a + 32\right)\cdot 61^{6} + \left(2 a^{2} + 29 a + 42\right)\cdot 61^{7} + \left(43 a^{2} + 14 a + 1\right)\cdot 61^{8} + \left(14 a^{2} + 15 a + 5\right)\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 47 a^{2} + 34 a + 19 + \left(54 a^{2} + 18 a + 49\right)\cdot 61 + \left(57 a^{2} + 32 a + 5\right)\cdot 61^{2} + \left(2 a^{2} + 18 a + 29\right)\cdot 61^{3} + \left(48 a^{2} + 30 a + 18\right)\cdot 61^{4} + \left(20 a^{2} + 53 a + 18\right)\cdot 61^{5} + \left(21 a^{2} + 39 a + 54\right)\cdot 61^{6} + \left(57 a^{2} + 37 a + 34\right)\cdot 61^{7} + \left(2 a^{2} + 31 a + 58\right)\cdot 61^{8} + \left(49 a^{2} + 17 a + 22\right)\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 9 }$ $=$ $ 52 + 35\cdot 61 + 60\cdot 61^{2} + 50\cdot 61^{3} + 14\cdot 61^{4} + 15\cdot 61^{5} + 46\cdot 61^{6} + 30\cdot 61^{7} + 13\cdot 61^{8} + 56\cdot 61^{9} +O\left(61^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5)(2,9)(4,6)$
$(1,2,6)(4,9,5)$
$(1,4,7)(2,5,3)(6,9,8)$
$(1,2,6)(3,8,7)(4,5,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(3,4)(5,8)(7,9)$$-1$
$1$$3$$(1,2,6)(3,8,7)(4,5,9)$$3 \zeta_{3}$
$1$$3$$(1,6,2)(3,7,8)(4,9,5)$$-3 \zeta_{3} - 3$
$6$$3$$(1,4,7)(2,5,3)(6,9,8)$$0$
$6$$3$$(1,9,8)(2,4,7)(3,6,5)$$0$
$6$$3$$(1,5,3)(2,9,8)(4,7,6)$$0$
$6$$3$$(1,2,6)(4,9,5)$$0$
$9$$6$$(1,6,2)(3,9,8,4,7,5)$$\zeta_{3} + 1$
$9$$6$$(1,2,6)(3,5,7,4,8,9)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.