Properties

Label 3.2e2_3e2_113e2.18t24.2c1
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 2^{2} \cdot 3^{2} \cdot 113^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$459684= 2^{2} \cdot 3^{2} \cdot 113^{2} $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 5 x^{7} - 6 x^{5} + 7 x^{4} - x^{3} - 3 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 18T24
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{3} + 2 x + 27 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 6\cdot 29 + 28\cdot 29^{2} + 11\cdot 29^{3} + 4\cdot 29^{4} + 12\cdot 29^{5} + 14\cdot 29^{6} + 2\cdot 29^{7} + 7\cdot 29^{8} + 12\cdot 29^{9} + 9\cdot 29^{10} + 4\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 4 + 18\cdot 29 + 14\cdot 29^{2} + 22\cdot 29^{3} + 17\cdot 29^{4} + 8\cdot 29^{5} + 18\cdot 29^{6} + 26\cdot 29^{7} + 27\cdot 29^{8} + 6\cdot 29^{10} + 17\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 9 + \left(20 a^{2} + a + 20\right)\cdot 29 + \left(a^{2} + a + 2\right)\cdot 29^{2} + \left(14 a^{2} + 16 a + 14\right)\cdot 29^{3} + \left(21 a^{2} + 4 a + 25\right)\cdot 29^{4} + \left(19 a^{2} + 2 a + 18\right)\cdot 29^{5} + \left(4 a^{2} + 22 a + 5\right)\cdot 29^{6} + \left(2 a^{2} + 10 a + 9\right)\cdot 29^{7} + \left(16 a^{2} + 2 a + 4\right)\cdot 29^{8} + \left(26 a^{2} + 22 a + 19\right)\cdot 29^{9} + \left(4 a^{2} + 4 a + 22\right)\cdot 29^{10} + \left(7 a^{2} + 7 a + 13\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 8 a^{2} + 11 a + 7 + \left(2 a^{2} + 25 a + 25\right)\cdot 29 + \left(23 a^{2} + 28 a + 9\right)\cdot 29^{2} + \left(18 a^{2} + 13 a + 17\right)\cdot 29^{3} + \left(15 a^{2} + 10 a + 26\right)\cdot 29^{4} + \left(3 a^{2} + 7 a + 6\right)\cdot 29^{5} + \left(14 a^{2} + 22 a + 2\right)\cdot 29^{6} + \left(9 a^{2} + 5 a + 7\right)\cdot 29^{7} + \left(26 a^{2} + 22 a\right)\cdot 29^{8} + \left(18 a^{2} + 16 a + 21\right)\cdot 29^{9} + \left(3 a^{2} + 28 a + 5\right)\cdot 29^{10} + \left(13 a^{2} + 2 a + 3\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 15 a^{2} + 5 a + 26 + \left(3 a^{2} + 2 a + 26\right)\cdot 29 + \left(4 a^{2} + 9 a + 3\right)\cdot 29^{2} + \left(28 a^{2} + 11 a + 20\right)\cdot 29^{3} + \left(28 a^{2} + 19 a + 5\right)\cdot 29^{4} + \left(21 a^{2} + 26 a + 12\right)\cdot 29^{5} + \left(25 a^{2} + 19 a + 27\right)\cdot 29^{6} + \left(10 a^{2} + 11 a + 8\right)\cdot 29^{7} + \left(18 a^{2} + 26 a + 28\right)\cdot 29^{8} + \left(20 a^{2} + 5 a + 3\right)\cdot 29^{9} + \left(3 a^{2} + 27 a + 25\right)\cdot 29^{10} + \left(4 a^{2} + 7 a\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 6 a^{2} + 13 a + 14 + \left(23 a^{2} + a + 14\right)\cdot 29 + \left(a^{2} + 20 a + 10\right)\cdot 29^{2} + \left(11 a^{2} + 3 a + 26\right)\cdot 29^{3} + \left(13 a^{2} + 28 a + 13\right)\cdot 29^{4} + \left(3 a^{2} + 23 a + 16\right)\cdot 29^{5} + \left(18 a^{2} + 15 a + 7\right)\cdot 29^{6} + \left(8 a^{2} + 11 a + 25\right)\cdot 29^{7} + \left(13 a^{2} + 9 a + 11\right)\cdot 29^{8} + \left(18 a^{2} + 6 a + 20\right)\cdot 29^{9} + \left(21 a^{2} + 2 a\right)\cdot 29^{10} + \left(11 a^{2} + 18 a + 11\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 11 + 15\cdot 29 + 18\cdot 29^{2} + 2\cdot 29^{3} + 28\cdot 29^{4} + 23\cdot 29^{5} + 18\cdot 29^{6} + 26\cdot 29^{7} + 4\cdot 29^{8} + 19\cdot 29^{9} + 20\cdot 29^{10} + 8\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 5 a^{2} + 15 a + 6 + \left(21 a^{2} + 7 a + 12\right)\cdot 29 + \left(17 a^{2} + a + 14\right)\cdot 29^{2} + \left(25 a^{2} + 17 a\right)\cdot 29^{3} + \left(9 a^{2} + 28 a + 10\right)\cdot 29^{4} + \left(10 a^{2} + 11 a + 6\right)\cdot 29^{5} + \left(4 a^{2} + 27 a + 5\right)\cdot 29^{6} + \left(17 a^{2} + 26 a\right)\cdot 29^{7} + \left(25 a^{2} + 7 a + 17\right)\cdot 29^{8} + \left(25 a^{2} + 12 a + 8\right)\cdot 29^{9} + \left(13 a^{2} + 12 a + 15\right)\cdot 29^{10} + \left(26 a^{2} + 23 a + 10\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 9 }$ $=$ $ 24 a^{2} + 12 + \left(16 a^{2} + 20 a + 6\right)\cdot 29 + \left(9 a^{2} + 26 a + 13\right)\cdot 29^{2} + \left(18 a^{2} + 24 a\right)\cdot 29^{3} + \left(26 a^{2} + 24 a + 13\right)\cdot 29^{4} + \left(27 a^{2} + 14 a + 10\right)\cdot 29^{5} + \left(19 a^{2} + 8 a + 16\right)\cdot 29^{6} + \left(9 a^{2} + 20 a + 9\right)\cdot 29^{7} + \left(16 a^{2} + 18 a + 14\right)\cdot 29^{8} + \left(5 a^{2} + 23 a + 10\right)\cdot 29^{9} + \left(10 a^{2} + 11 a + 10\right)\cdot 29^{10} + \left(24 a^{2} + 27 a + 17\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(3,6)(4,8)(5,9)$
$(1,8,5)(2,3,4)(6,7,9)$
$(1,7,2)(3,8,9)(4,5,6)$
$(3,9,8)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(1,6)(2,5)(4,7)$$-1$
$1$$3$$(1,7,2)(3,8,9)(4,5,6)$$-3 \zeta_{3} - 3$
$1$$3$$(1,2,7)(3,9,8)(4,6,5)$$3 \zeta_{3}$
$6$$3$$(1,8,5)(2,3,4)(6,7,9)$$0$
$6$$3$$(1,3,5)(2,9,4)(6,7,8)$$0$
$6$$3$$(3,9,8)(4,5,6)$$0$
$6$$3$$(1,5,9)(2,4,8)(3,7,6)$$0$
$9$$6$$(1,4,2,6,7,5)(3,8,9)$$\zeta_{3} + 1$
$9$$6$$(1,5,7,6,2,4)(3,9,8)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.