Properties

Label 3.2e2_3_7e2_53e2.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 3 \cdot 7^{2} \cdot 53^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$1651692= 2^{2} \cdot 3 \cdot 7^{2} \cdot 53^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 5 x^{3} + 8 x^{2} - 11 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 9 + 5\cdot 43 + 37\cdot 43^{2} + 31\cdot 43^{3} + 21\cdot 43^{4} + 5\cdot 43^{5} + 9\cdot 43^{6} + 14\cdot 43^{7} + 17\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 16 + \left(12 a + 21\right)\cdot 43 + \left(22 a + 16\right)\cdot 43^{2} + \left(2 a + 31\right)\cdot 43^{3} + \left(31 a + 28\right)\cdot 43^{4} + \left(13 a + 8\right)\cdot 43^{5} + \left(17 a + 41\right)\cdot 43^{6} + \left(18 a + 20\right)\cdot 43^{7} + \left(24 a + 18\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 35 + 37\cdot 43 + 5\cdot 43^{2} + 11\cdot 43^{3} + 21\cdot 43^{4} + 37\cdot 43^{5} + 33\cdot 43^{6} + 28\cdot 43^{7} + 25\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 36 a + 4 + \left(2 a + 38\right)\cdot 43 + \left(41 a + 23\right)\cdot 43^{2} + \left(37 a + 1\right)\cdot 43^{3} + \left(4 a + 38\right)\cdot 43^{4} + \left(15 a + 37\right)\cdot 43^{5} + \left(33 a + 33\right)\cdot 43^{6} + \left(23 a + 4\right)\cdot 43^{7} + \left(a + 11\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 31 a + 28 + \left(30 a + 21\right)\cdot 43 + \left(20 a + 26\right)\cdot 43^{2} + \left(40 a + 11\right)\cdot 43^{3} + \left(11 a + 14\right)\cdot 43^{4} + \left(29 a + 34\right)\cdot 43^{5} + \left(25 a + 1\right)\cdot 43^{6} + \left(24 a + 22\right)\cdot 43^{7} + \left(18 a + 24\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 40 + \left(40 a + 4\right)\cdot 43 + \left(a + 19\right)\cdot 43^{2} + \left(5 a + 41\right)\cdot 43^{3} + \left(38 a + 4\right)\cdot 43^{4} + \left(27 a + 5\right)\cdot 43^{5} + \left(9 a + 9\right)\cdot 43^{6} + \left(19 a + 38\right)\cdot 43^{7} + \left(41 a + 31\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(3,6)$
$(1,3)$
$(1,4,2)(3,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,3)(2,5)(4,6)$$-3$
$3$$2$$(1,3)$$1$
$3$$2$$(1,3)(4,6)$$-1$
$6$$2$$(2,4)(5,6)$$-1$
$6$$2$$(1,3)(2,4)(5,6)$$1$
$8$$3$$(1,4,2)(3,6,5)$$0$
$6$$4$$(1,6,3,4)$$-1$
$6$$4$$(1,3)(2,6,5,4)$$1$
$8$$6$$(1,6,5,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.