Properties

Label 3.2e2_3_7_53.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 3 \cdot 7 \cdot 53 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$4452= 2^{2} \cdot 3 \cdot 7 \cdot 53 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 11 x^{4} + 5 x^{3} + 72 x^{2} - 378 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.3_7_53.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 40 a + 27 + 18\cdot 43 + \left(15 a + 15\right)\cdot 43^{2} + \left(30 a + 1\right)\cdot 43^{3} + \left(24 a + 28\right)\cdot 43^{4} + \left(38 a + 34\right)\cdot 43^{5} + \left(13 a + 32\right)\cdot 43^{6} + \left(16 a + 22\right)\cdot 43^{7} + \left(4 a + 37\right)\cdot 43^{8} + \left(26 a + 35\right)\cdot 43^{9} + \left(25 a + 21\right)\cdot 43^{10} +O\left(43^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 14 + 14\cdot 43 + 38\cdot 43^{2} + 41\cdot 43^{3} + 21\cdot 43^{4} + 6\cdot 43^{5} + 36\cdot 43^{6} + 9\cdot 43^{7} + 13\cdot 43^{8} + 37\cdot 43^{9} + 17\cdot 43^{10} +O\left(43^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 2 + 28\cdot 43 + 36\cdot 43^{2} + 34\cdot 43^{3} + 27\cdot 43^{4} + 22\cdot 43^{5} + 22\cdot 43^{6} + 32\cdot 43^{7} + 27\cdot 43^{8} + 18\cdot 43^{9} + 14\cdot 43^{10} +O\left(43^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 40 a + 34 + \left(33 a + 25\right)\cdot 43 + \left(30 a + 27\right)\cdot 43^{2} + \left(26 a + 40\right)\cdot 43^{3} + \left(39 a + 7\right)\cdot 43^{4} + \left(33 a + 11\right)\cdot 43^{5} + \left(14 a + 24\right)\cdot 43^{6} + \left(33 a + 31\right)\cdot 43^{7} + \left(21 a + 39\right)\cdot 43^{8} + \left(9 a + 38\right)\cdot 43^{9} + \left(15 a + 23\right)\cdot 43^{10} +O\left(43^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 24 + \left(42 a + 22\right)\cdot 43 + \left(27 a + 29\right)\cdot 43^{2} + \left(12 a + 16\right)\cdot 43^{3} + \left(18 a + 22\right)\cdot 43^{4} + \left(4 a + 5\right)\cdot 43^{5} + \left(29 a + 8\right)\cdot 43^{6} + \left(26 a + 25\right)\cdot 43^{7} + \left(38 a + 25\right)\cdot 43^{8} + \left(16 a + 14\right)\cdot 43^{9} + \left(17 a + 21\right)\cdot 43^{10} +O\left(43^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 31 + \left(9 a + 19\right)\cdot 43 + \left(12 a + 24\right)\cdot 43^{2} + \left(16 a + 36\right)\cdot 43^{3} + \left(3 a + 20\right)\cdot 43^{4} + \left(9 a + 5\right)\cdot 43^{5} + \left(28 a + 5\right)\cdot 43^{6} + \left(9 a + 7\right)\cdot 43^{7} + \left(21 a + 28\right)\cdot 43^{8} + \left(33 a + 26\right)\cdot 43^{9} + \left(27 a + 29\right)\cdot 43^{10} +O\left(43^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2)(3,5,6)$
$(1,4)(5,6)$
$(1,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,5)(2,3)(4,6)$$-3$
$3$$2$$(2,3)$$1$
$3$$2$$(1,5)(2,3)$$-1$
$6$$2$$(1,4)(5,6)$$-1$
$6$$2$$(1,4)(2,3)(5,6)$$1$
$8$$3$$(1,4,2)(3,5,6)$$0$
$6$$4$$(1,2,5,3)$$-1$
$6$$4$$(1,5)(2,6,3,4)$$1$
$8$$6$$(1,4,2,5,6,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.