Properties

Label 3.2e2_3_67.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 3 \cdot 67 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$804= 2^{2} \cdot 3 \cdot 67 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 3 x^{3} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.3_67.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 24 a + 21 + \left(20 a + 36\right)\cdot 43 + \left(31 a + 33\right)\cdot 43^{2} + \left(42 a + 33\right)\cdot 43^{3} + 41 a\cdot 43^{4} + \left(37 a + 3\right)\cdot 43^{5} + \left(22 a + 1\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 12 + 17\cdot 43 + 34\cdot 43^{2} + 28\cdot 43^{3} + 28\cdot 43^{4} + 18\cdot 43^{5} + 34\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 3 + \left(38 a + 41\right)\cdot 43 + \left(12 a + 6\right)\cdot 43^{2} + \left(22 a + 34\right)\cdot 43^{3} + 14 a\cdot 43^{4} + \left(7 a + 20\right)\cdot 43^{5} + \left(18 a + 19\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 2 + \left(22 a + 33\right)\cdot 43 + \left(11 a + 1\right)\cdot 43^{2} + 2\cdot 43^{3} + a\cdot 43^{4} + \left(5 a + 42\right)\cdot 43^{5} + \left(20 a + 28\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 18 + 35\cdot 43 + 27\cdot 43^{2} + 29\cdot 43^{3} + 19\cdot 43^{4} + 32\cdot 43^{5} + 14\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 15 a + 31 + \left(4 a + 8\right)\cdot 43 + \left(30 a + 24\right)\cdot 43^{2} + 20 a\cdot 43^{3} + \left(28 a + 36\right)\cdot 43^{4} + \left(35 a + 12\right)\cdot 43^{5} + \left(24 a + 30\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(2,5)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,5)(3,4)$$-3$
$3$$2$$(1,6)$$1$
$3$$2$$(1,6)(2,5)$$-1$
$6$$2$$(2,3)(4,5)$$1$
$6$$2$$(1,6)(2,3)(4,5)$$-1$
$8$$3$$(1,2,3)(4,6,5)$$0$
$6$$4$$(1,5,6,2)$$1$
$6$$4$$(1,4,6,3)(2,5)$$-1$
$8$$6$$(1,5,4,6,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.