Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 24 a + 21 + \left(20 a + 36\right)\cdot 43 + \left(31 a + 33\right)\cdot 43^{2} + \left(42 a + 33\right)\cdot 43^{3} + 41 a\cdot 43^{4} + \left(37 a + 3\right)\cdot 43^{5} + \left(22 a + 1\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 12 + 17\cdot 43 + 34\cdot 43^{2} + 28\cdot 43^{3} + 28\cdot 43^{4} + 18\cdot 43^{5} + 34\cdot 43^{6} +O\left(43^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 28 a + 3 + \left(38 a + 41\right)\cdot 43 + \left(12 a + 6\right)\cdot 43^{2} + \left(22 a + 34\right)\cdot 43^{3} + 14 a\cdot 43^{4} + \left(7 a + 20\right)\cdot 43^{5} + \left(18 a + 19\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 19 a + 2 + \left(22 a + 33\right)\cdot 43 + \left(11 a + 1\right)\cdot 43^{2} + 2\cdot 43^{3} + a\cdot 43^{4} + \left(5 a + 42\right)\cdot 43^{5} + \left(20 a + 28\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 18 + 35\cdot 43 + 27\cdot 43^{2} + 29\cdot 43^{3} + 19\cdot 43^{4} + 32\cdot 43^{5} + 14\cdot 43^{6} +O\left(43^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 15 a + 31 + \left(4 a + 8\right)\cdot 43 + \left(30 a + 24\right)\cdot 43^{2} + 20 a\cdot 43^{3} + \left(28 a + 36\right)\cdot 43^{4} + \left(35 a + 12\right)\cdot 43^{5} + \left(24 a + 30\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,3)(4,5)$ |
| $(2,5)$ |
| $(1,2,3)(4,6,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $1$ |
$2$ |
$(1,6)(2,5)(3,4)$ |
$-3$ |
| $3$ |
$2$ |
$(1,6)$ |
$1$ |
| $3$ |
$2$ |
$(1,6)(2,5)$ |
$-1$ |
| $6$ |
$2$ |
$(2,3)(4,5)$ |
$1$ |
| $6$ |
$2$ |
$(1,6)(2,3)(4,5)$ |
$-1$ |
| $8$ |
$3$ |
$(1,2,3)(4,6,5)$ |
$0$ |
| $6$ |
$4$ |
$(1,5,6,2)$ |
$1$ |
| $6$ |
$4$ |
$(1,4,6,3)(2,5)$ |
$-1$ |
| $8$ |
$6$ |
$(1,5,4,6,2,3)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.