Properties

Label 3.4260.6t11.a.a
Dimension $3$
Group $S_4\times C_2$
Conductor $4260$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4\times C_2$
Conductor: \(4260\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 71 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.6049200.1
Galois orbit size: $1$
Smallest permutation container: $S_4\times C_2$
Parity: even
Determinant: 1.1065.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.12780.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 3x^{5} + 8x^{4} - 11x^{3} + 8x^{2} - 3x + 11 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 9.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: \( x^{2} + 33x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 8 + 24\cdot 37 + 35\cdot 37^{2} + 2\cdot 37^{3} + 36\cdot 37^{4} + 9\cdot 37^{5} + 8\cdot 37^{6} + 18\cdot 37^{7} + 21\cdot 37^{8} +O(37^{9})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 15 a + \left(35 a + 20\right)\cdot 37 + \left(22 a + 30\right)\cdot 37^{2} + \left(21 a + 19\right)\cdot 37^{3} + \left(12 a + 17\right)\cdot 37^{4} + \left(17 a + 4\right)\cdot 37^{5} + \left(14 a + 29\right)\cdot 37^{6} + \left(13 a + 18\right)\cdot 37^{7} + \left(2 a + 3\right)\cdot 37^{8} +O(37^{9})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 22 a + 23 + \left(a + 35\right)\cdot 37 + \left(14 a + 12\right)\cdot 37^{2} + \left(15 a + 9\right)\cdot 37^{3} + \left(24 a + 9\right)\cdot 37^{4} + \left(19 a + 24\right)\cdot 37^{5} + \left(22 a + 32\right)\cdot 37^{6} + \left(23 a + 20\right)\cdot 37^{7} + \left(34 a + 36\right)\cdot 37^{8} +O(37^{9})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 30 + 12\cdot 37 + 37^{2} + 34\cdot 37^{3} + 27\cdot 37^{5} + 28\cdot 37^{6} + 18\cdot 37^{7} + 15\cdot 37^{8} +O(37^{9})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 15 a + 15 + \left(35 a + 1\right)\cdot 37 + \left(22 a + 24\right)\cdot 37^{2} + \left(21 a + 27\right)\cdot 37^{3} + \left(12 a + 27\right)\cdot 37^{4} + \left(17 a + 12\right)\cdot 37^{5} + \left(14 a + 4\right)\cdot 37^{6} + \left(13 a + 16\right)\cdot 37^{7} + 2 a\cdot 37^{8} +O(37^{9})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 22 a + 1 + \left(a + 17\right)\cdot 37 + \left(14 a + 6\right)\cdot 37^{2} + \left(15 a + 17\right)\cdot 37^{3} + \left(24 a + 19\right)\cdot 37^{4} + \left(19 a + 32\right)\cdot 37^{5} + \left(22 a + 7\right)\cdot 37^{6} + \left(23 a + 18\right)\cdot 37^{7} + \left(34 a + 33\right)\cdot 37^{8} +O(37^{9})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,6)$
$(1,4)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$1$$2$$(1,4)(2,6)(3,5)$$-3$
$3$$2$$(3,5)$$1$
$3$$2$$(1,4)(3,5)$$-1$
$6$$2$$(1,2)(4,6)$$1$
$6$$2$$(1,2)(3,5)(4,6)$$-1$
$8$$3$$(1,2,3)(4,6,5)$$0$
$6$$4$$(1,3,4,5)$$1$
$6$$4$$(1,4)(2,3,6,5)$$-1$
$8$$6$$(1,2,3,4,6,5)$$0$