Properties

Label 3.2e2_3_5_71.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 3 \cdot 5 \cdot 71 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$4260= 2^{2} \cdot 3 \cdot 5 \cdot 71 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 8 x^{4} - 11 x^{3} + 8 x^{2} - 3 x + 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 24\cdot 37 + 35\cdot 37^{2} + 2\cdot 37^{3} + 36\cdot 37^{4} + 9\cdot 37^{5} + 8\cdot 37^{6} + 18\cdot 37^{7} + 21\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 15 a + \left(35 a + 20\right)\cdot 37 + \left(22 a + 30\right)\cdot 37^{2} + \left(21 a + 19\right)\cdot 37^{3} + \left(12 a + 17\right)\cdot 37^{4} + \left(17 a + 4\right)\cdot 37^{5} + \left(14 a + 29\right)\cdot 37^{6} + \left(13 a + 18\right)\cdot 37^{7} + \left(2 a + 3\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 23 + \left(a + 35\right)\cdot 37 + \left(14 a + 12\right)\cdot 37^{2} + \left(15 a + 9\right)\cdot 37^{3} + \left(24 a + 9\right)\cdot 37^{4} + \left(19 a + 24\right)\cdot 37^{5} + \left(22 a + 32\right)\cdot 37^{6} + \left(23 a + 20\right)\cdot 37^{7} + \left(34 a + 36\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 30 + 12\cdot 37 + 37^{2} + 34\cdot 37^{3} + 27\cdot 37^{5} + 28\cdot 37^{6} + 18\cdot 37^{7} + 15\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 15 a + 15 + \left(35 a + 1\right)\cdot 37 + \left(22 a + 24\right)\cdot 37^{2} + \left(21 a + 27\right)\cdot 37^{3} + \left(12 a + 27\right)\cdot 37^{4} + \left(17 a + 12\right)\cdot 37^{5} + \left(14 a + 4\right)\cdot 37^{6} + \left(13 a + 16\right)\cdot 37^{7} + 2 a\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 1 + \left(a + 17\right)\cdot 37 + \left(14 a + 6\right)\cdot 37^{2} + \left(15 a + 17\right)\cdot 37^{3} + \left(24 a + 19\right)\cdot 37^{4} + \left(19 a + 32\right)\cdot 37^{5} + \left(22 a + 7\right)\cdot 37^{6} + \left(23 a + 18\right)\cdot 37^{7} + \left(34 a + 33\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,6)$
$(1,4)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,6)(3,5)$ $-3$
$3$ $2$ $(3,5)$ $1$
$3$ $2$ $(1,4)(3,5)$ $-1$
$6$ $2$ $(1,2)(4,6)$ $1$
$6$ $2$ $(1,2)(3,5)(4,6)$ $-1$
$8$ $3$ $(1,2,3)(4,6,5)$ $0$
$6$ $4$ $(1,3,4,5)$ $1$
$6$ $4$ $(1,4)(2,3,6,5)$ $-1$
$8$ $6$ $(1,2,3,4,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.