Properties

Label 3.2e2_3_5_71.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 3 \cdot 5 \cdot 71 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$4260= 2^{2} \cdot 3 \cdot 5 \cdot 71 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 23 x^{4} - 41 x^{3} + 128 x^{2} - 108 x - 124 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 55 a + 24 + \left(19 a + 19\right)\cdot 59 + \left(34 a + 43\right)\cdot 59^{2} + \left(28 a + 54\right)\cdot 59^{3} + \left(40 a + 46\right)\cdot 59^{4} + \left(56 a + 38\right)\cdot 59^{5} + \left(12 a + 22\right)\cdot 59^{6} + \left(17 a + 24\right)\cdot 59^{7} + \left(51 a + 55\right)\cdot 59^{8} + \left(6 a + 44\right)\cdot 59^{9} +O\left(59^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 8 + 17\cdot 59 + 33\cdot 59^{2} + 6\cdot 59^{3} + 21\cdot 59^{4} + 4\cdot 59^{5} + 39\cdot 59^{6} + 43\cdot 59^{7} + 49\cdot 59^{8} + 10\cdot 59^{9} +O\left(59^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 55 a + 40 + \left(19 a + 15\right)\cdot 59 + \left(34 a + 1\right)\cdot 59^{2} + \left(28 a + 10\right)\cdot 59^{3} + 40 a\cdot 59^{4} + \left(56 a + 4\right)\cdot 59^{5} + \left(12 a + 21\right)\cdot 59^{6} + \left(17 a + 30\right)\cdot 59^{7} + \left(51 a + 28\right)\cdot 59^{8} + \left(6 a + 58\right)\cdot 59^{9} +O\left(59^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 20 + \left(39 a + 43\right)\cdot 59 + \left(24 a + 57\right)\cdot 59^{2} + \left(30 a + 48\right)\cdot 59^{3} + \left(18 a + 58\right)\cdot 59^{4} + \left(2 a + 54\right)\cdot 59^{5} + \left(46 a + 37\right)\cdot 59^{6} + \left(41 a + 28\right)\cdot 59^{7} + \left(7 a + 30\right)\cdot 59^{8} + 52 a\cdot 59^{9} +O\left(59^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 36 + \left(39 a + 39\right)\cdot 59 + \left(24 a + 15\right)\cdot 59^{2} + \left(30 a + 4\right)\cdot 59^{3} + \left(18 a + 12\right)\cdot 59^{4} + \left(2 a + 20\right)\cdot 59^{5} + \left(46 a + 36\right)\cdot 59^{6} + \left(41 a + 34\right)\cdot 59^{7} + \left(7 a + 3\right)\cdot 59^{8} + \left(52 a + 14\right)\cdot 59^{9} +O\left(59^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 52 + 41\cdot 59 + 25\cdot 59^{2} + 52\cdot 59^{3} + 37\cdot 59^{4} + 54\cdot 59^{5} + 19\cdot 59^{6} + 15\cdot 59^{7} + 9\cdot 59^{8} + 48\cdot 59^{9} +O\left(59^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(5,6)$
$(1,5)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,6)(3,4)$ $-3$
$3$ $2$ $(3,4)$ $1$
$3$ $2$ $(1,5)(3,4)$ $-1$
$6$ $2$ $(1,2)(5,6)$ $-1$
$6$ $2$ $(1,2)(3,4)(5,6)$ $1$
$8$ $3$ $(1,2,3)(4,5,6)$ $0$
$6$ $4$ $(1,3,5,4)$ $-1$
$6$ $4$ $(1,3,5,4)(2,6)$ $1$
$8$ $6$ $(1,2,3,5,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.