Properties

Label 3.2e2_3_11e2_13e2.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{2} \cdot 3 \cdot 11^{2} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$245388= 2^{2} \cdot 3 \cdot 11^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{4} - 10 x^{2} - 26 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 421 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 59 + 8\cdot 421 + 86\cdot 421^{2} + 221\cdot 421^{3} + 208\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 152 + 275\cdot 421 + 127\cdot 421^{2} + 24\cdot 421^{3} + 78\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 236 + 68\cdot 421 + 413\cdot 421^{2} + 402\cdot 421^{3} + 233\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 395 + 68\cdot 421 + 215\cdot 421^{2} + 193\cdot 421^{3} + 321\cdot 421^{4} +O\left(421^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.