Properties

Label 3.2e2_3_113.9t12.1c2
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 2^{2} \cdot 3 \cdot 113 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$1356= 2^{2} \cdot 3 \cdot 113 $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} + x^{7} - 3 x^{6} + 9 x^{5} - 12 x^{4} + 2 x^{3} + 7 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $(C_3^2:C_3):C_2$
Parity: Odd
Determinant: 1.3_113.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
$r_{ 1 }$ $=$ $ 10 a^{2} + 18 a + 4 + \left(10 a^{2} + 12 a + 2\right)\cdot 23 + \left(8 a^{2} + 15 a + 12\right)\cdot 23^{2} + \left(11 a^{2} + 17 a + 1\right)\cdot 23^{3} + \left(13 a^{2} + a + 7\right)\cdot 23^{4} + \left(12 a^{2} + 21 a + 8\right)\cdot 23^{5} + \left(6 a^{2} + 19 a + 20\right)\cdot 23^{6} + \left(14 a^{2} + 10 a + 12\right)\cdot 23^{7} + \left(16 a^{2} + 8 a + 7\right)\cdot 23^{8} + \left(10 a^{2} + 20 a + 3\right)\cdot 23^{9} + \left(21 a^{2} + 3 a + 1\right)\cdot 23^{10} + \left(13 a^{2} + 16 a + 22\right)\cdot 23^{11} + \left(9 a^{2} + 12 a + 16\right)\cdot 23^{12} +O\left(23^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 9 a^{2} + 17 a + 1 + \left(14 a^{2} + 19 a + 13\right)\cdot 23 + \left(12 a^{2} + 20 a + 7\right)\cdot 23^{2} + \left(21 a^{2} + 3 a + 14\right)\cdot 23^{3} + \left(12 a^{2} + 21 a + 12\right)\cdot 23^{4} + \left(18 a^{2} + 8\right)\cdot 23^{5} + \left(10 a^{2} + 15 a + 10\right)\cdot 23^{6} + \left(3 a^{2} + 14 a + 2\right)\cdot 23^{7} + \left(14 a^{2} + 21 a + 16\right)\cdot 23^{8} + \left(15 a^{2} + 21 a + 20\right)\cdot 23^{9} + \left(6 a^{2} + 15 a + 10\right)\cdot 23^{10} + \left(2 a^{2} + 11 a + 13\right)\cdot 23^{11} + \left(22 a^{2} + 14 a + 1\right)\cdot 23^{12} +O\left(23^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 22 + 16\cdot 23 + 13\cdot 23^{3} + 6\cdot 23^{4} + 16\cdot 23^{5} + 5\cdot 23^{6} + 13\cdot 23^{7} + 18\cdot 23^{8} + 3\cdot 23^{9} + 3\cdot 23^{10} + 2\cdot 23^{11} + 9\cdot 23^{12} +O\left(23^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 14 a^{2} + 7 a + 17 + \left(3 a^{2} + 10 a\right)\cdot 23 + \left(16 a^{2} + 18 a + 7\right)\cdot 23^{2} + \left(4 a^{2} + 5 a\right)\cdot 23^{3} + \left(19 a^{2} + 18 a + 7\right)\cdot 23^{4} + \left(15 a^{2} + 21 a + 20\right)\cdot 23^{5} + \left(21 a^{2} + 2 a + 9\right)\cdot 23^{6} + \left(14 a^{2} + 16 a + 21\right)\cdot 23^{7} + \left(4 a^{2} + 20 a + 6\right)\cdot 23^{8} + \left(15 a^{2} + 3 a + 9\right)\cdot 23^{9} + \left(10 a^{2} + 19 a + 17\right)\cdot 23^{10} + \left(13 a^{2} + a + 13\right)\cdot 23^{11} + \left(7 a^{2} + 9 a + 6\right)\cdot 23^{12} +O\left(23^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 3 + 22\cdot 23 + 14\cdot 23^{2} + 21\cdot 23^{3} + 10\cdot 23^{4} + 11\cdot 23^{5} + 10\cdot 23^{6} + 6\cdot 23^{7} + 9\cdot 23^{8} + 21\cdot 23^{9} + 6\cdot 23^{10} + 15\cdot 23^{11} + 13\cdot 23^{12} +O\left(23^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 15 + 14\cdot 23 + 9\cdot 23^{2} + 3\cdot 23^{3} + 6\cdot 23^{4} + 7\cdot 23^{6} + 5\cdot 23^{7} + 23^{8} + 8\cdot 23^{9} + 20\cdot 23^{10} + 9\cdot 23^{11} + 2\cdot 23^{12} +O\left(23^{ 13 }\right)$
$r_{ 7 }$ $=$ $ 13 a^{2} + 12 a + 14 + \left(18 a + 17\right)\cdot 23 + \left(7 a^{2} + a + 7\right)\cdot 23^{2} + \left(10 a^{2} + 9 a + 22\right)\cdot 23^{3} + \left(6 a^{2} + 3\right)\cdot 23^{4} + \left(22 a^{2} + 15 a + 21\right)\cdot 23^{5} + \left(3 a^{2} + 6 a + 8\right)\cdot 23^{6} + \left(12 a^{2} + 5 a + 6\right)\cdot 23^{7} + \left(9 a^{2} + a + 2\right)\cdot 23^{8} + \left(7 a^{2} + 2\right)\cdot 23^{9} + \left(4 a^{2} + 18 a\right)\cdot 23^{10} + \left(15 a + 3\right)\cdot 23^{11} + \left(5 a^{2} + a + 17\right)\cdot 23^{12} +O\left(23^{ 13 }\right)$
$r_{ 8 }$ $=$ $ a^{2} + 17 a + 21 + \left(8 a^{2} + 7 a + 19\right)\cdot 23 + \left(3 a^{2} + 2\right)\cdot 23^{2} + \left(14 a^{2} + 10 a + 12\right)\cdot 23^{3} + \left(3 a^{2} + a + 15\right)\cdot 23^{4} + \left(5 a^{2} + 7 a + 13\right)\cdot 23^{5} + \left(8 a^{2} + a + 14\right)\cdot 23^{6} + \left(7 a^{2} + 3 a + 7\right)\cdot 23^{7} + \left(22 a^{2} + 19\right)\cdot 23^{8} + \left(22 a^{2} + a + 22\right)\cdot 23^{9} + \left(11 a^{2} + 12 a + 17\right)\cdot 23^{10} + \left(20 a^{2} + 18 a + 14\right)\cdot 23^{11} + \left(18 a^{2} + 6 a + 12\right)\cdot 23^{12} +O\left(23^{ 13 }\right)$
$r_{ 9 }$ $=$ $ 22 a^{2} + 21 a + 20 + \left(8 a^{2} + 22 a + 7\right)\cdot 23 + \left(21 a^{2} + 11 a + 6\right)\cdot 23^{2} + \left(6 a^{2} + 22 a + 3\right)\cdot 23^{3} + \left(13 a^{2} + 2 a + 22\right)\cdot 23^{4} + \left(17 a^{2} + 3 a + 14\right)\cdot 23^{5} + \left(17 a^{2} + 4\right)\cdot 23^{6} + \left(16 a^{2} + 19 a + 16\right)\cdot 23^{7} + \left(a^{2} + 16 a + 10\right)\cdot 23^{8} + \left(20 a^{2} + 21 a\right)\cdot 23^{9} + \left(13 a^{2} + 22 a + 14\right)\cdot 23^{10} + \left(18 a^{2} + 4 a + 20\right)\cdot 23^{11} + \left(5 a^{2} + a + 11\right)\cdot 23^{12} +O\left(23^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,9,4)(2,7,8)(3,6,5)$
$(1,2,5)(3,9,7)(4,8,6)$
$(2,8,7)(3,6,5)$
$(2,5)(3,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(2,5)(3,7)(6,8)$$1$
$1$$3$$(1,9,4)(2,7,8)(3,6,5)$$-3 \zeta_{3} - 3$
$1$$3$$(1,4,9)(2,8,7)(3,5,6)$$3 \zeta_{3}$
$6$$3$$(1,2,5)(3,9,7)(4,8,6)$$0$
$6$$3$$(1,8,5)(2,3,9)(4,7,6)$$0$
$6$$3$$(2,8,7)(3,6,5)$$0$
$6$$3$$(1,5,7)(2,4,6)(3,8,9)$$0$
$9$$6$$(1,9,4)(2,3,8,5,7,6)$$-\zeta_{3} - 1$
$9$$6$$(1,4,9)(2,6,7,5,8,3)$$\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.