Properties

Label 3.2e2_37e2_16361.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{2} \cdot 37^{2} \cdot 16361 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$89592836= 2^{2} \cdot 37^{2} \cdot 16361 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 23 x^{4} + 51 x^{3} + 134 x^{2} - 160 x - 214 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.16361.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 17 + 4\cdot 23 + 8\cdot 23^{2} + 17\cdot 23^{3} + 22\cdot 23^{4} + 16\cdot 23^{5} + 12\cdot 23^{6} + 20\cdot 23^{7} + 13\cdot 23^{8} + 13\cdot 23^{9} + 23^{10} + 8\cdot 23^{11} + 6\cdot 23^{12} + 22\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 8 + \left(3 a + 22\right)\cdot 23 + \left(8 a + 12\right)\cdot 23^{2} + \left(14 a + 16\right)\cdot 23^{3} + \left(10 a + 8\right)\cdot 23^{4} + \left(6 a + 17\right)\cdot 23^{5} + \left(16 a + 16\right)\cdot 23^{6} + \left(4 a + 7\right)\cdot 23^{7} + \left(10 a + 6\right)\cdot 23^{8} + \left(5 a + 14\right)\cdot 23^{9} + \left(21 a + 17\right)\cdot 23^{10} + \left(2 a + 21\right)\cdot 23^{11} + \left(13 a + 21\right)\cdot 23^{12} + \left(14 a + 16\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 18 + \left(3 a + 14\right)\cdot 23 + \left(8 a + 20\right)\cdot 23^{2} + \left(14 a + 8\right)\cdot 23^{3} + \left(10 a + 7\right)\cdot 23^{4} + \left(6 a + 3\right)\cdot 23^{5} + \left(16 a + 3\right)\cdot 23^{6} + \left(4 a + 22\right)\cdot 23^{7} + 10 a\cdot 23^{8} + \left(5 a + 8\right)\cdot 23^{9} + \left(21 a + 14\right)\cdot 23^{10} + \left(2 a + 16\right)\cdot 23^{11} + 13 a\cdot 23^{12} + \left(14 a + 13\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 4 }$ $=$ $ a + 6 + \left(19 a + 8\right)\cdot 23 + \left(14 a + 2\right)\cdot 23^{2} + \left(8 a + 14\right)\cdot 23^{3} + \left(12 a + 15\right)\cdot 23^{4} + \left(16 a + 19\right)\cdot 23^{5} + \left(6 a + 19\right)\cdot 23^{6} + 18 a\cdot 23^{7} + \left(12 a + 22\right)\cdot 23^{8} + \left(17 a + 14\right)\cdot 23^{9} + \left(a + 8\right)\cdot 23^{10} + \left(20 a + 6\right)\cdot 23^{11} + \left(9 a + 22\right)\cdot 23^{12} + \left(8 a + 9\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 5 }$ $=$ $ a + 16 + 19 a\cdot 23 + \left(14 a + 10\right)\cdot 23^{2} + \left(8 a + 6\right)\cdot 23^{3} + \left(12 a + 14\right)\cdot 23^{4} + \left(16 a + 5\right)\cdot 23^{5} + \left(6 a + 6\right)\cdot 23^{6} + \left(18 a + 15\right)\cdot 23^{7} + \left(12 a + 16\right)\cdot 23^{8} + \left(17 a + 8\right)\cdot 23^{9} + \left(a + 5\right)\cdot 23^{10} + \left(20 a + 1\right)\cdot 23^{11} + \left(9 a + 1\right)\cdot 23^{12} + \left(8 a + 6\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 7 + 18\cdot 23 + 14\cdot 23^{2} + 5\cdot 23^{3} + 6\cdot 23^{5} + 10\cdot 23^{6} + 2\cdot 23^{7} + 9\cdot 23^{8} + 9\cdot 23^{9} + 21\cdot 23^{10} + 14\cdot 23^{11} + 16\cdot 23^{12} +O\left(23^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)$
$(1,2)(5,6)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,5)(3,4)$$-3$
$3$$2$$(3,4)$$1$
$3$$2$$(1,6)(3,4)$$-1$
$6$$2$$(1,2)(5,6)$$-1$
$6$$2$$(1,2)(3,4)(5,6)$$1$
$8$$3$$(1,2,3)(4,6,5)$$0$
$6$$4$$(1,3,6,4)$$-1$
$6$$4$$(1,6)(2,3,5,4)$$1$
$8$$6$$(1,2,3,6,5,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.