Properties

Label 3.2e2_307e2.18t24.4
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 2^{2} \cdot 307^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$376996= 2^{2} \cdot 307^{2} $
Artin number field: Splitting field of $f= x^{9} - 2 x^{7} - 5 x^{6} - 2 x^{5} + x^{4} + 4 x^{3} + 3 x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 18T24
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{3} + 9 x + 76 $
Roots:
$r_{ 1 }$ $=$ $ 12 + 30\cdot 79 + 76\cdot 79^{2} + 21\cdot 79^{3} + 39\cdot 79^{4} + 42\cdot 79^{5} + 39\cdot 79^{6} + 11\cdot 79^{7} + 32\cdot 79^{8} + 8\cdot 79^{9} +O\left(79^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 35 + 37\cdot 79 + 46\cdot 79^{2} + 7\cdot 79^{3} + 39\cdot 79^{4} + 9\cdot 79^{5} + 67\cdot 79^{6} + 13\cdot 79^{7} + 16\cdot 79^{8} + 8\cdot 79^{9} +O\left(79^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 61 a^{2} + 64 a + 74 + \left(46 a^{2} + 75 a + 36\right)\cdot 79 + \left(19 a^{2} + 33 a + 40\right)\cdot 79^{2} + \left(36 a^{2} + 60 a + 48\right)\cdot 79^{3} + \left(26 a^{2} + 3 a + 32\right)\cdot 79^{4} + \left(10 a^{2} + 72 a + 59\right)\cdot 79^{5} + \left(27 a^{2} + 54 a + 38\right)\cdot 79^{6} + \left(10 a^{2} + 56 a + 40\right)\cdot 79^{7} + \left(68 a^{2} + 34 a + 2\right)\cdot 79^{8} + \left(3 a^{2} + 16 a + 24\right)\cdot 79^{9} +O\left(79^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 60 a^{2} + 76 a + 37 + \left(37 a^{2} + 33 a + 18\right)\cdot 79 + \left(25 a^{2} + 25 a + 48\right)\cdot 79^{2} + \left(71 a^{2} + 19 a + 70\right)\cdot 79^{3} + \left(72 a^{2} + 78 a + 13\right)\cdot 79^{4} + \left(31 a^{2} + 58 a + 10\right)\cdot 79^{5} + \left(28 a^{2} + 9 a + 52\right)\cdot 79^{6} + \left(67 a^{2} + 34 a + 71\right)\cdot 79^{7} + \left(29 a^{2} + 51 a + 48\right)\cdot 79^{8} + \left(61 a^{2} + 31 a + 37\right)\cdot 79^{9} +O\left(79^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 71 a^{2} + a + 24 + \left(15 a^{2} + 38 a + 45\right)\cdot 79 + \left(29 a^{2} + 77 a + 70\right)\cdot 79^{2} + \left(a^{2} + 22 a + 45\right)\cdot 79^{3} + \left(76 a^{2} + 72 a + 32\right)\cdot 79^{4} + \left(76 a^{2} + 45 a + 43\right)\cdot 79^{5} + \left(25 a^{2} + 35 a + 37\right)\cdot 79^{6} + \left(58 a^{2} + 59 a + 17\right)\cdot 79^{7} + \left(73 a^{2} + 56 a + 75\right)\cdot 79^{8} + \left(a^{2} + 77 a + 75\right)\cdot 79^{9} +O\left(79^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 27 a^{2} + 2 a + 76 + \left(25 a^{2} + 7 a + 22\right)\cdot 79 + \left(24 a^{2} + 55 a + 41\right)\cdot 79^{2} + \left(6 a^{2} + 36 a + 75\right)\cdot 79^{3} + \left(9 a^{2} + 7 a + 25\right)\cdot 79^{4} + \left(49 a^{2} + 53 a + 34\right)\cdot 79^{5} + \left(24 a^{2} + 33 a + 29\right)\cdot 79^{6} + \left(32 a^{2} + 64 a + 19\right)\cdot 79^{7} + \left(54 a^{2} + 49 a + 38\right)\cdot 79^{8} + \left(15 a^{2} + 48 a\right)\cdot 79^{9} +O\left(79^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 60 + 23\cdot 79 + 27\cdot 79^{2} + 48\cdot 79^{3} + 69\cdot 79^{4} + 25\cdot 79^{5} + 67\cdot 79^{6} + 9\cdot 79^{7} + 60\cdot 79^{8} + 24\cdot 79^{9} +O\left(79^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 13 a^{2} + 9 a + 23 + \left(57 a^{2} + 47 a + 20\right)\cdot 79 + \left(50 a^{2} + 11 a + 69\right)\cdot 79^{2} + \left(15 a^{2} + 20 a + 3\right)\cdot 79^{3} + \left(8 a^{2} + 26 a + 2\right)\cdot 79^{4} + \left(42 a^{2} + 52 a + 13\right)\cdot 79^{5} + \left(4 a^{2} + 43 a + 61\right)\cdot 79^{6} + \left(63 a^{2} + 50 a + 40\right)\cdot 79^{7} + \left(54 a^{2} + 35 a + 1\right)\cdot 79^{8} + \left(62 a^{2} + 41 a + 61\right)\cdot 79^{9} +O\left(79^{ 10 }\right)$
$r_{ 9 }$ $=$ $ 5 a^{2} + 6 a + 54 + \left(54 a^{2} + 35 a + 1\right)\cdot 79 + \left(8 a^{2} + 33 a + 54\right)\cdot 79^{2} + \left(27 a^{2} + 77 a + 72\right)\cdot 79^{3} + \left(44 a^{2} + 48 a + 60\right)\cdot 79^{4} + \left(26 a^{2} + 33 a + 77\right)\cdot 79^{5} + \left(47 a^{2} + 59 a + 1\right)\cdot 79^{6} + \left(5 a^{2} + 50 a + 12\right)\cdot 79^{7} + \left(35 a^{2} + 8 a + 41\right)\cdot 79^{8} + \left(12 a^{2} + 21 a + 75\right)\cdot 79^{9} +O\left(79^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,7,2)(4,6,5)$
$(1,4)(2,6)(5,7)$
$(1,7,2)(3,9,8)(4,5,6)$
$(1,3,6)(2,8,5)(4,7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$9$ $2$ $(1,8)(2,9)(3,7)$ $-1$ $-1$
$1$ $3$ $(1,7,2)(3,9,8)(4,5,6)$ $-3 \zeta_{3} - 3$ $3 \zeta_{3}$
$1$ $3$ $(1,2,7)(3,8,9)(4,6,5)$ $3 \zeta_{3}$ $-3 \zeta_{3} - 3$
$6$ $3$ $(1,3,6)(2,8,5)(4,7,9)$ $0$ $0$
$6$ $3$ $(1,3,5)(2,8,4)(6,7,9)$ $0$ $0$
$6$ $3$ $(1,7,2)(4,6,5)$ $0$ $0$
$6$ $3$ $(1,4,3)(2,6,8)(5,9,7)$ $0$ $0$
$9$ $6$ $(1,3,2,8,7,9)(4,5,6)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$9$ $6$ $(1,9,7,8,2,3)(4,6,5)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.